22 research outputs found

    Null-space preconditioners for saddle point systems

    Get PDF
    The null-space method is a technique that has been used for many years to reduce a saddle point system to a smaller, easier to solve, symmetric positive-definite system. This method can be understood as a block factorization of the system. Here we explore the use of preconditioners based on incomplete versions of a particular null-space factorization, and compare their performance with the equivalent Schur-complement based preconditioners. We also describe how to apply the non-symmetric preconditioners proposed using the conjugate gradient method (CG) with a non-standard inner product. This requires an exact solve with the (1,1) block, and the resulting algorithm is applicable in other cases where Bramble-Pasciak CG is used. We verify the efficiency of the newly proposed preconditioners on a number of test cases from a range of applications

    Parallel Matrix-free polynomial preconditioners with application to flow simulations in discrete fracture networks

    Full text link
    We develop a robust matrix-free, communication avoiding parallel, high-degree polynomial preconditioner for the Conjugate Gradient method for large and sparse symmetric positive definite linear systems. We discuss the selection of a scaling parameter aimed at avoiding unwanted clustering of eigenvalues of the preconditioned matrices at the extrema of the spectrum. We use this preconditioned framework to solve a 3×33 \times 3 block system arising in the simulation of fluid flow in large-size discrete fractured networks. We apply our polynomial preconditioner to a suitable Schur complement related with this system, which can not be explicitly computed because of its size and density. Numerical results confirm the excellent properties of the proposed preconditioner up to very high polynomial degrees. The parallel implementation achieves satisfactory scalability by taking advantage from the reduced number of scalar products and hence of global communications

    H2, fixed architecture, control design for large scale systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1990.Includes bibliographical references (p. 227-234).by Mathieu Mercadal.Ph.D

    Nonlinear probabilistic estimation of 3-D geometry from images

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.Includes bibliographical references (p. 159-164).by Ali Jerome Azarbayejani.Ph.D

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282
    corecore