4,406 research outputs found

    Preconditioning Kernel Matrices

    Full text link
    The computational and storage complexity of kernel machines presents the primary barrier to their scaling to large, modern, datasets. A common way to tackle the scalability issue is to use the conjugate gradient algorithm, which relieves the constraints on both storage (the kernel matrix need not be stored) and computation (both stochastic gradients and parallelization can be used). Even so, conjugate gradient is not without its own issues: the conditioning of kernel matrices is often such that conjugate gradients will have poor convergence in practice. Preconditioning is a common approach to alleviating this issue. Here we propose preconditioned conjugate gradients for kernel machines, and develop a broad range of preconditioners particularly useful for kernel matrices. We describe a scalable approach to both solving kernel machines and learning their hyperparameters. We show this approach is exact in the limit of iterations and outperforms state-of-the-art approximations for a given computational budget

    Model Selection for Support Vector Machine Classification

    Get PDF
    We address the problem of model selection for Support Vector Machine (SVM) classification. For fixed functional form of the kernel, model selection amounts to tuning kernel parameters and the slack penalty coefficient CC. We begin by reviewing a recently developed probabilistic framework for SVM classification. An extension to the case of SVMs with quadratic slack penalties is given and a simple approximation for the evidence is derived, which can be used as a criterion for model selection. We also derive the exact gradients of the evidence in terms of posterior averages and describe how they can be estimated numerically using Hybrid Monte Carlo techniques. Though computationally demanding, the resulting gradient ascent algorithm is a useful baseline tool for probabilistic SVM model selection, since it can locate maxima of the exact (unapproximated) evidence. We then perform extensive experiments on several benchmark data sets. The aim of these experiments is to compare the performance of probabilistic model selection criteria with alternatives based on estimates of the test error, namely the so-called ``span estimate'' and Wahba's Generalized Approximate Cross-Validation (GACV) error. We find that all the ``simple'' model criteria (Laplace evidence approximations, and the Span and GACV error estimates) exhibit multiple local optima with respect to the hyperparameters. While some of these give performance that is competitive with results from other approaches in the literature, a significant fraction lead to rather higher test errors. The results for the evidence gradient ascent method show that also the exact evidence exhibits local optima, but these give test errors which are much less variable and also consistently lower than for the simpler model selection criteria

    Fast optimization of Multithreshold Entropy Linear Classifier

    Get PDF
    Multithreshold Entropy Linear Classifier (MELC) is a density based model which searches for a linear projection maximizing the Cauchy-Schwarz Divergence of dataset kernel density estimation. Despite its good empirical results, one of its drawbacks is the optimization speed. In this paper we analyze how one can speed it up through solving an approximate problem. We analyze two methods, both similar to the approximate solutions of the Kernel Density Estimation querying and provide adaptive schemes for selecting a crucial parameters based on user-specified acceptable error. Furthermore we show how one can exploit well known conjugate gradients and L-BFGS optimizers despite the fact that the original optimization problem should be solved on the sphere. All above methods and modifications are tested on 10 real life datasets from UCI repository to confirm their practical usability.Comment: Presented at Theoretical Foundations of Machine Learning 2015 (http://tfml.gmum.net), final version published in Schedae Informaticae Journa

    Parallel one-versus-rest SVM training on the GPU

    Get PDF
    Linear SVMs are a popular choice of binary classifier. It is often necessary to train many different classifiers on a multiclass dataset in a one-versus-rest fashion, and this for several values of the regularization constant. We propose to harness GPU parallelism by training as many classifiers as possible at the same time. We optimize the primal L2-loss SVM objective using the conjugate gradient method, with an adapted backtracking line search strategy. We compared our approach to liblinear and achieved speedups of up to 17 times on our available hardware

    Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

    Full text link
    We introduce a new structured kernel interpolation (SKI) framework, which generalises and unifies inducing point methods for scalable Gaussian processes (GPs). SKI methods produce kernel approximations for fast computations through kernel interpolation. The SKI framework clarifies how the quality of an inducing point approach depends on the number of inducing (aka interpolation) points, interpolation strategy, and GP covariance kernel. SKI also provides a mechanism to create new scalable kernel methods, through choosing different kernel interpolation strategies. Using SKI, with local cubic kernel interpolation, we introduce KISS-GP, which is 1) more scalable than inducing point alternatives, 2) naturally enables Kronecker and Toeplitz algebra for substantial additional gains in scalability, without requiring any grid data, and 3) can be used for fast and expressive kernel learning. KISS-GP costs O(n) time and storage for GP inference. We evaluate KISS-GP for kernel matrix approximation, kernel learning, and natural sound modelling.Comment: 19 pages, 4 figure
    corecore