20 research outputs found

    Inner approximation of convex cones via primal-dual ellipsoidal norms

    Get PDF
    We study ellipsoids from the point of view of approximating convex sets. Our focus is on finding largest volume ellipsoids with specified centers which are contained in certain convex cones. After reviewing the related literature and establishing some fundamental mathematical techniques that will be useful, we derive such maximum volume ellipsoids for second order cones and the cones of symmetric positive semidefinite matrices. Then we move to the more challenging problem of finding a largest pair (in the sense of geometric mean of their radii) of primal-dual ellipsoids (in the sense of dual norms) with specified centers that are contained in their respective primal-dual pair of convex cones

    Algèbres de Jordan euclidiennes et problèmes variationels avec contraintes coniques

    Get PDF
    This thesis deals with four different but interrelated topics: variational problems on Euclidean Jordan algebras, complementarity problems on the space of symmetric matrices, angular analysis between two closed convex cones and the central path for symmetric cone linear programming.In the first part of this work we study the concept of “operator commutation” in Euclidean Jordan algebras by providing a commutation principle for variational problems involving spectral data.Our main concern of the second part is the analysis and numerical resolution of a broad class of complementarity problems on spaces of symmetric matrices. The complementarity conditions are expressed in terms of the Loewner ordering or, more generally, with respect to a dual pair of Loewnerian cones.The third part of this work is an attempt to build a general theory of critical angles for a pair of closed convex cones. The angular analysis for a pair of specially structured cones is also covered. For instance, we work with linear subspaces, polyhedral cones, revolution cones, topheavy cones and cones of matrices.The last part of this work focuses on the convergence and the limiting behavior of the central path in symmetric cone linear programming. This is done by using Jordan-algebra techniques.Cette thèse concerne quatre thèmes apparemment différents, mais en fait intimement liés : problèmes variationnels sur les algèbres de Jordan euclidiennes, problèmes de complémentarité sur l’espace des matrices symétriques, analyse angulaire entre deux cônes convexes fermés et analyse du chemin central en programmation conique symétrique.Dans la première partie de ce travail, le concept de “commutation au sens opérationnel” dans les algèbres de Jordan euclidiennes est étudié en fournissant un principe de commutation pour problèmes variationnels avec données spectrales.Dans la deuxième partie, nous abordons l’analyse et la résolution numérique d’une large classe de problèmes de complémentarité sur l’espace des matrices symétriques. Les conditions de complémentarité sont exprimées en termes de l’ordre de Loewner ou, plus généralement, en termes d’un cône du type Loewnerien.La troisième partie de ce travail est une tentative de construction d’une théorie générale des angles critiques pour une paire de cônes convexes fermés. L’analyse angulaire pour une paire de cônes spécialement structurés est également considérée. Par-exemple, nous travaillons avec des sous-espaces linéaires, des cônes polyédriques, des cônes de révolution, des cônes “topheavy” et des cônes de matrices.La dernière partie de ce travail étudie la convergence et le comportement asymptotique du chemin central en programmation conique symétrique. Ceci est fait en utilisant des techniques propres aux algèbres de Jordan

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2

    Calculating Sparse and Dense Correspondences for Near-Isometric Shapes

    Get PDF
    Comparing and analysing digital models are basic techniques of geometric shape processing. These techniques have a variety of applications, such as extracting the domain knowledge contained in the growing number of digital models to simplify shape modelling. Another example application is the analysis of real-world objects, which itself has a variety of applications, such as medical examinations, medical and agricultural research, and infrastructure maintenance. As methods to digitalize physical objects mature, any advances in the analysis of digital shapes lead to progress in the analysis of real-world objects. Global shape properties, like volume and surface area, are simple to compare but contain only very limited information. Much more information is contained in local shape differences, such as where and how a plant grew. Sadly the computation of local shape differences is hard as it requires knowledge of corresponding point pairs, i.e. points on both shapes that correspond to each other. The following article thesis (cumulative dissertation) discusses several recent publications for the computation of corresponding points: - Geodesic distances between points, i.e. distances along the surface, are fundamental for several shape processing tasks as well as several shape matching techniques. Chapter 3 introduces and analyses fast and accurate bounds on geodesic distances. - When building a shape space on a set of shapes, misaligned correspondences lead to points moving along the surfaces and finally to a larger shape space. Chapter 4 shows that this also works the other way around, that is good correspondences are obtain by optimizing them to generate a compact shape space. - Representing correspondences with a “functional map” has a variety of advantages. Chapter 5 shows that representing the correspondence map as an alignment of Green’s functions of the Laplace operator has similar advantages, but is much less dependent on the number of eigenvectors used for the computations. - Quadratic assignment problems were recently shown to reliably yield sparse correspondences. Chapter 6 compares state-of-the-art convex relaxations of graphics and vision with methods from discrete optimization on typical quadratic assignment problems emerging in shape matching
    corecore