3,363 research outputs found

    Congruent triangles in arrangements of lines

    Get PDF
    We study the maximum number of congruent triangles in finite arrangements of I lines in the Euclidean plane. Denote this number by f (l). We show that f (5) = 5 and that the construction realizing this maximum is unique, f (6) = 8, and f (7) = 14. We also discuss for which integers c there exist arrangements on l lines with exactly c congruent triangles. In parallel, we treat the case when the triangles are faces of the plane graph associated to the arrangement (i.e. the interior of the triangle has empty intersection with every line in the arrangement). Lastly, we formulate four conjectures

    Triangle areas in line arrangements

    Get PDF
    A widely investigated subject in combinatorial geometry, originated from Erd\H{o}s, is the following. Given a point set PP of cardinality nn in the plane, how can we describe the distribution of the determined distances? This has been generalized in many directions. In this paper we propose the following variants. Consider planar arrangements of nn lines. Determine the maximum number of triangles of unit area, maximum area or minimum area, determined by these lines. Determine the minimum size of a subset of these nn lines so that all triples determine distinct area triangles. We prove that the order of magnitude for the maximum occurrence of unit areas lies between Ω(n2)\Omega(n^2) and O(n9/4)O(n^{9/4}). This result is strongly connected to both additive combinatorial results and Szemer\'edi--Trotter type incidence theorems. Next we show a tight bound for the maximum number of minimum area triangles. Finally we present lower and upper bounds for the maximum area and distinct area problems by combining algebraic, geometric and combinatorial techniques.Comment: Title is shortened. Some typos and small errors were correcte

    Spherical Tiling by 12 Congruent Pentagons

    Full text link
    The tilings of the 2-dimensional sphere by congruent triangles have been extensively studied, and the edge-to-edge tilings have been completely classified. However, not much is known about the tilings by other congruent polygons. In this paper, we classify the simplest case, which is the edge-to-edge tilings of the 2-dimensional sphere by 12 congruent pentagons. We find one major class allowing two independent continuous parameters and four classes of isolated examples. The classification is done by first separately classifying the combinatorial, edge length, and angle aspects, and then combining the respective classifications together.Comment: 53 pages, 40 figures, spherical geometr

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    Tilings of the Sphere by Edge Congruent Pentagons

    Full text link
    We study edge-to-edge tilings of the sphere by edge congruent pentagons, under the assumption that there are tiles with all vertices having degree 3. We develop the technique of neighborhood tilings and apply the technique to completely classify edge congruent earth map tilings.Comment: 36 pages, 34 figure

    Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces

    Get PDF
    We study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is strongly NP-complete even if the pieces are all polyominos. On the positive side, we show that the problem can be solved in polynomial time if the number of pieces is a fixed constant
    corecore