349 research outputs found

    Permutations of Massive Vacua

    Get PDF
    We discuss the permutation group G of massive vacua of four-dimensional gauge theories with N=1 supersymmetry that arises upon tracing loops in the space of couplings. We concentrate on superconformal N=4 and N=2 theories with N=1 supersymmetry preserving mass deformations. The permutation group G of massive vacua is the Galois group of characteristic polynomials for the vacuum expectation values of chiral observables. We provide various techniques to effectively compute characteristic polynomials in given theories, and we deduce the existence of varying symmetry breaking patterns of the duality group depending on the gauge algebra and matter content of the theory. Our examples give rise to interesting field extensions of spaces of modular forms.Comment: 44 pages, 1 figur

    N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces

    Get PDF
    We establish a correspondence between generalized quiver gauge theories in four dimensions and congruence subgroups of the modular group, hinging upon the trivalent graphs which arise in both. The gauge theories and the graphs are enumerated and their numbers are compared. The correspondence is particularly striking for genus zero torsion-free congruence subgroups as exemplified by those which arise in Moonshine. We analyze in detail the case of index 24, where modular elliptic K3 surfaces emerge: here, the elliptic j-invariants can be recast as dessins d'enfant which dictate the Seiberg-Witten curves.Comment: 42+1 pages, 5 figures; various helpful comments incorporate

    Absolute profinite rigidity and hyperbolic geometry

    Full text link
    We construct arithmetic Kleinian groups that are profinitely rigid in the absolute sense: each is distinguished from all other finitely generated, residually finite groups by its set of finite quotients. The Bianchi group PSL(2,Z[ω])\mathrm{PSL}(2,\mathbb{Z}[\omega]) with ω2+ω+1=0\omega^2+\omega+1=0 is rigid in this sense. Other examples include the non-uniform lattice of minimal co-volume in PSL(2,C)\mathrm{PSL}(2,\mathbb{C}) and the fundamental group of the Weeks manifold (the closed hyperbolic 33-manifold of minimal volume).Comment: v2: 35 pages. Final version. To appear in the Annals of Mathematics, Vol. 192, no. 3, November 202

    a 3-dimensional Rademacher conjecture

    Get PDF

    Rank gradient, cost of groups and the rank versus Heegaard genus problem

    Full text link
    We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the `Rank vs. Heegaard genus' conjecture on hyperbolic 3-manifolds is incompatible with the `Fixed Price problem' in topological dynamics
    corecore