263 research outputs found

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl

    Non-classical modal logic for belief

    Get PDF

    Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations

    Get PDF
    AbstractThis paper generalizes many-sorted algebra (MSA) to order-sorted algebra (OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of object-oriented programming), several forms of polymorphism and overloading, partial operations (as total on equationally defined subsorts), exception handling, and an operational semantics based on term rewriting. We give the basic algebraic constructions for OSA, including quotient, image, product and term algebra, and we prove their basic properties, including quotient, homomorphism, and initiality theorems. The paper's major mathematical results include a notion of OSA deduction, a completeness theorem for it, and an OSA Birkhoff variety theorem. We also develop conditional OSA, including initiality, completeness, and McKinsey-Malcev quasivariety theorems, and we reduce OSA to (conditional) MSA, which allows lifting many known MSA results to OSA. Retracts, which intuitively are left inverses to subsort inclusions, provide relatively inexpensive run-time error handling. We show that it is safe to add retracts to any OSA signature, in the sense that it gives rise to a conservative extension. A final section compares and contrasts many different approaches to OSA. This paper also includes several examples demonstrating the flexibility and applicability of OSA, including some standard benchmarks like stack and list, as well as a much more substantial example, the number hierarchy from the naturals up to the quaternions

    Noncommutative lattices

    Get PDF
    The extended study of non-commutative lattices was begun in 1949 by Ernst Pascual Jordan, a theoretical and mathematical physicist and co-worker of Max Born and Werner Karl Heisenberg. Jordan introduced noncommutative lattices as algebraic structures potentially suitable to encompass the logic of the quantum world. The modern theory of noncommutative lattices began 40 years later with Jonathan Leech\u27s 1989 paper "Skew lattices in rings." Recently, noncommutative generalizations of lattices and related structures have seen an upsurge in interest, with new ideas and applications emerging, from quasilattices to skew Heyting algebras. Much of this activity is derived in some way from the initiation, over thirty years ago, of Jonathan Leech\u27s program of research that studied noncommutative variations of lattices. The present book consists of seven chapters, mainly covering skew lattices, quasilattices and paralattices, skew lattices of idempotents in rings and skew Boolean algebras. As such, it is the first research monograph covering major results due to the renewed study of noncommutative lattices. It will serve as a valuable graduate textbook on the subject, as well as handy reference to researchers of noncommutative algebras

    Quantum monadic algebras

    Full text link
    We introduce quantum monadic and quantum cylindric algebras. These are adaptations to the quantum setting of the monadic algebras of Halmos, and cylindric algebras of Henkin, Monk and Tarski, that are used in algebraic treatments of classical and intuitionistic predicate logic. Primary examples in the quantum setting come from von Neumann algebras and subfactors. Here we develop the basic properties of these quantum monadic and cylindric algebras and relate them to quantum predicate logic

    Geometric Structures in Group Theory (hybrid meeting)

    Get PDF
    The conference focused on the use of geometric methods to study infinite groups and the interplay of group theory with other areas. One of the central techniques in geometric group theory is to study infinite discrete groups by their actions on nice, suitable spaces. These spaces often carry an interesting large-scale geometry, such as non-positive curvature or hyperbolicity in the sense of Gromov, or are equipped with rich geometric or combinatorial structure. From these actions one can investigate structural properties of the groups. This connection has become very prominent during the last years. In this context non-discrete topological groups, such as profinite groups or locally compact groups appear quite naturally. Likewise, analytic methods and operator theory play an increasing role in the area

    The Singular Value Decomposition over Completed Idempotent Semifields

    Get PDF
    In this paper, we provide a basic technique for Lattice Computing: an analogue of the Singular Value Decomposition for rectangular matrices over complete idempotent semifields (i-SVD). These algebras are already complete lattices and many of their instances—the complete schedule algebra or completed max-plus semifield, the tropical algebra, and the max-times algebra—are useful in a range of applications, e.g., morphological processing. We further the task of eliciting the relation between i-SVD and the extension of Formal Concept Analysis to complete idempotent semifields (K-FCA) started in a prior work. We find out that for a matrix with entries considered in a complete idempotent semifield, the Galois connection at the heart of K-FCA provides two basis of left- and right-singular vectors to choose from, for reconstructing the matrix. These are join-dense or meet-dense sets of object or attribute concepts of the concept lattice created by the connection, and they are almost surely not pairwise orthogonal. We conclude with an attempt analogue of the fundamental theorem of linear algebra that gathers all results and discuss it in the wider setting of matrix factorization.This research was funded by the Spanish Government-MinECo project TEC2017-84395-P and the Dept. of Research and Innovation of Madrid Regional Authority project EMPATIA-CM (Y2018/TCS-5046)
    • …
    corecore