89 research outputs found

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Radio resource management techniques for QoS provision in 5G networks

    Get PDF
    Premi extraordinari doctorat UPC curs 2017-2018. Àmbit d’Enginyeria de les TICAs numerous mobile applications and over-the-top (OTT) services emerge and mobile Internet connectivity becomes ubiquitous, the provision of high quality of service (QoS) is more challenging for mobile network operators (MNOs). Research efforts focus on the development of innovative resource management techniques and have introduced the long term evolution advanced (LTE-A) communication standard. Novel business models make the growth of network capacity sustainable by enabling MNOs to combine their resources. The fifth generation (5G) mobile networks will involve technologies and business stakeholders with different capabilities and demands that may affect the QoS provision, requiring efficient radio resource sharing. The need for higher network capacity has introduced novel technologies that improve resource allocation efficiency. Direct connectivity among user equipment terminals (UEs) circumventing the LTE-A infrastructure alleviates the network overload. Part of mobile traffic is offloaded to outband device-to-device (D2D) connections (in unlicensed spectrum) enabling data exchange between UEs directly or via UEs-relays. Still, MNOs need additional spectrum resources and infrastructure. The inter-operator network sharing concept has emerged motivating the adoption of virtualization that enables network slicing, i.e., dynamic separation of resources in virtual slices (VSs). VSs are managed in isolation by different tenants using software defined networking and encompass core and radio access network resources allocated periodically to UEs. When UEs access OTT applications, flows with different QoS demands and priorities determined by OTT service providers (OSPs) are generated. OSPs’ policies should be considered in VS allocation. The coexisting technologies, business models and stakeholders require sophisticated radio resource management (RRM) techniques. To that end, RRM is performed in a complex ecosystem. When D2D communication involves data concurrently downloaded by the mobile network, QoS may be affected by LTE-A network parameters (resource scheduling policy, downlink channel conditions). It is also affected by the relay selection, as UEs may not be willing to help unknown UE pairs and UEs’ social ties in mobile applications may influence willingness for D2D cooperation. Thus, effective medium access control (MAC) mechanisms should coordinate D2D transmissions employing advanced techniques, e.g., network coding (NC). When UEs access OTT applications, OSPs’ policies are not considered by MNOs in RRM and OSPs cannot apply flow prioritization. Network neutrality issues also arise when OSPs claim resources from MNOs aiming to minimize grade of service (GoS). OSPs’ intervention may delay flows’ accommodation due to the time required for OSP-MNO interaction and the time the flows spent waiting for resources. This thesis proposes novel solutions to the RRM issues of outband D2D communication and VS allocation for OSPs in 5G networks. We present a cooperative D2D MAC protocol that leverages the opportunities for NC in D2D communication under the influence of LTE-A network parameters and its throughput performance analysis. The protocol improves D2D throughput and energy efficiency, especially for UEs with better downlink channel conditions. We next introduce social awareness in D2D MAC design and present a social-aware cooperative D2D MAC protocol that employs UEs’ social ties to promote the use of friendly relays reducing the total energy consumption. Motivated by the lack of approaches for OSP-oriented RRM, we present a novel flow prioritization algorithm based on matching theory that applies OSPs’ policies respecting the network neutrality and the analysis of its GoS and delay performance. The algorithm maintains low overhead and delay without affecting fairness among OSPs. Our techniques highlight the QoS improvement induced by the joint consideration of different technologies and business stakeholders in RRM design.A medida que varias aplicaciones mĂłviles y servicios over-the-top (OTT) surgen y el Internet mĂłvil se vuelve ubicua, la prestaciĂłn de alta calidad de servicio (QoS) es desafiante para los operadores de red mĂłvil (MNOs). Los estudios de investigaciĂłn se enfocan en tĂ©cnicas innovadoras para la gestiĂłn de recursos de red y han resultado en la especificaciĂłn del estĂĄndar de comunicaciĂłn long term evolution advanced (LTE-A). Modelos comerciales nuevos hacen que el crecimiento de la capacidad de red sea sostenible al permitir que MNOs combinen sus recursos. La quinta generaciĂłn (5G) de redes mĂłviles implicarĂĄ tecnologĂ­as y partes comerciales interesadas con varias habilidades y demandas que pueden afectar la provisiĂłn de QoS y demandan la gestiĂłn eficaz de recursos de radio. La necesidad de capacidad de red mĂĄs alta ha introducido tecnologĂ­as que hacen mĂĄs eficiente la asignaciĂłn de recursos. La conectividad directa entre terminales de equipos de usuarios (UEs) eludiendo la infraestructura LTE-A alivia la sobrecarga de red. Parte del trĂĄfico es dirigido a conexiones de dispositivo a dispositivo (D2D) outband permitiendo la comunicaciĂłn de UEs directamente o con relĂ©s. Los MNOs necesitan nuevos recursos de espectro e infraestructura. El intercambio de recursos entre MNOs ha surgido motivando la adopciĂłn de virtualizaciĂłn que realiza la segmentaciĂłn de red i.e., la separaciĂłn dinĂĄmica de recursos en trozos virtuales (VSs). Los VSs son administrados de forma aislada por inquilinos diferentes con software defined networking y abarcan recursos de red core y radio access asignadas periĂłdicamente a UEs. Cuando UEs usan aplicaciones OTT, flujos de aplicaciĂłn con demandas y prioridades definidas por proveedores de servicios OTT (OSPs) se generan. Las polĂ­ticas de OSPs deben ser integradas en la asignaciĂłn de VSs. La coexistencia de varias tecnologĂ­as y partes comerciales demanda tĂ©cnicas sofisticadas de gestiĂłn de recursos radio (RRM). Con ese fin, la RRM se realiza en un ecosistema complejo. Si la comunicaciĂłn D2D involucra datos descargados simultĂĄneamente por la red mĂłvil, los parĂĄmetros de red LTE-A (polĂ­tica de scheduling de recursos, condiciones de canal downlink) afectan el QoS. La selecciĂłn de relĂ©s afecta el rendimiento porque los UEs no desean siempre ayudar a UEs desconocidos. Las relaciones sociales de los UEs en aplicaciones mĂłviles pueden determinar la voluntad para la comunicaciĂłn cooperativa D2D. Por lo tanto, mecanismos de control de acceso al medio (MAC) deben coordinar las transmisiones D2D con tĂ©cnicas avanzadas ej., codificaciĂłn de red. Si los UEs usan servicios OTT, las polĂ­ticas de OSPs no son consideradas en RRM y los OSPs no emplean flujos prioritarios. Problemas de neutralidad de red surgen cuando los OSPs reclaman recursos de MNOs para minimizar el grado de servicio (GoS). La intervenciĂłn de OSPs puede causar retraso en el servicio de flujos debido a la interacciĂłn OSP-MNO y el tiempo requerido para que los flujos reciban recursos. Esta tesis presenta soluciones nuevas para los problemas RRM de comunicaciĂłn D2D outband y asignaciĂłn de VSs a OSPs en redes 5G. Proponemos un protocolo D2D MAC cooperativo que explota las oportunidades de NC bajo la influencia de parĂĄmetros de red LTE-A y su anĂĄlisis de rendimiento. El protocolo mejora el rendimiento y la eficiencia energĂ©tica especialmente para UEs con mejores condiciones de canal downlink. Introducimos la conciencia social en el D2D MAC y proponemos un protocolo que utiliza relaciones sociales de UEs para elegir relĂ©s-amigos y reduce el consumo de energĂ­a. Dada la falta de tĂ©cnicas que aborden el problema RRM de OSPs presentamos un algoritmo que aplique polĂ­ticas de OSPs y respete la neutralidad usando la teorĂ­a de matching, y su anĂĄlisis de GoS y retraso. El algoritmo induce bajo coste y retraso sin afectar la imparcialidad entre OSPs. Estas tĂ©cnicas demuestran la mejora de QoS gracias a la consideraciĂłn de tecnologas y partes comerciales diferentes en RRM.Award-winningPostprint (published version

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Energy-aware adaptive solutions for multimedia delivery to wireless devices

    Get PDF
    The functionality of smart mobile devices is improving rapidly but these devices are limited in terms of practical use because of battery-life. This situation cannot be remedied by simply installing batteries with higher capacities in the devices. There are strict limitations in the design of a smartphone, in terms of physical space, that prohibit this “quick-fix” from being possible. The solution instead lies with the creation of an intelligent, dynamic mechanism for utilizing the hardware components on a device in an energy-efficient manner, while also maintaining the Quality of Service (QoS) requirements of the applications running on the device. This thesis proposes the following Energy-aware Adaptive Solutions (EASE): 1. BaSe-AMy: the Battery and Stream-aware Adaptive Multimedia Delivery (BaSe-AMy) algorithm assesses battery-life, network characteristics, video-stream properties and device hardware information, in order to dynamically reduce the power consumption of the device while streaming video. The algorithm computes the most efficient strategy for altering the characteristics of the stream, the playback of the video, and the hardware utilization of the device, dynamically, while meeting application’s QoS requirements. 2. PowerHop: an algorithm which assesses network conditions, device power consumption, neighboring node devices and QoS requirements to decide whether to adapt the transmission power or the number of hops that a device uses for communication. PowerHop’s ability to dynamically reduce the transmission power of the device’s Wireless Network Interface Card (WNIC) provides scope for reducing the power consumption of the device. In this case shorter transmission distances with multiple hops can be utilized to maintain network range. 3. A comprehensive survey of adaptive energy optimizations in multimedia-centric wireless devices is also provided. Additional contributions: 1. A custom video comparison tool was developed to facilitate objective assessment of streamed videos. 2. A new solution for high-accuracy mobile power logging was designed and implemented

    A Detailed Characterization of 60 GHz Wi-Fi (IEEE 802.11ad)

    Get PDF
    The emergence of wireless local area network (WLAN) standards and the global system of mobile communication (GSM) in the early 1990s incited tremendous growth in the demand for wireless connectivity. Iterative technological enhancements to cellular and WLAN improved wireless capacity and created a breadth of new mobile applications. The continued increase in display resolutions and image quality combined with streaming displacing satellite/cable has created unprecedented demands on wireless infrastructure. Data-caps on cellular networks deter over consumption and increasingly shift the growing burden to Wi-Fi networks. The traditional 2.4/5 GHz Wi-Fi bands have become overloaded and the increasing number of wireless devices in the home, public, and workplace create difficult challenges to deliver quality service to large numbers of client stations. In dense urban areas, the wireless medium is subjected to increased interference due to overlapping networks and other devices communicating in the same frequency bands. Improvements to conventional Wi-Fi are approaching their theoretical limits and higher order enhancements require idealized conditions which are seldom attainable in practice. In an effort to supplant to scaling capacity requirements a very high frequency WLAN amendment has been proposed (IEEE 802.11ad). IEEE 802.11ad, also referred to as Wireless Gigabit (WiGig), operates in the globally unlicensed 60 GHz band and offers channel bandwidths nearly 100x as wide as 802.11n. The higher bandwidth facilitates multi-Gbps throughput even with the use of lower complexity modulation coding schemes (MCS). IEEE 802.11ad relies heavily on rate adaptation and high beamforming gain to mitigate interference and fading as signals in the 60 GHz band suffer from higher atmospheric ab- sorption and free space path loss (FSPL). Due to the unique nature of 60 GHz wireless there have been numerous research efforts. Many studies have been directed at simulation and modeling of the 60 GHz channel. However modeling the channel is difficult as real- world environments are highly dynamic with varying link quality and conditions which cannot be accurately predicted by conventional techniques. Some research is focused on medium access control (MAC) enhancements to improve overall capacity by coordinating concurrent links or reducing communication overhead for example. Lastly, there has been a limited amount of real world testing of 802.11ad due to lack of availability of commercial platforms and measurement instrumentation. Some researchers tested early generation devices in certain use cases such as in vehicles for media streaming, in data centers to augment the wired network, or in basic indoor and outdoor environments. This research contains two main components. In the first study, analytical models are applied to estimate line of sight (LOS) 802.11ad performance for realistic antenna param- eters. The second part contains a comprehensive evaluation of performance and reliability of early generation 802.11ad hardware. This characterization emphasizes environmen- tal performance (e.g. conference room, cubical farm, open office), multiple-client testing (multiclient), multiple network interference (spatial re-use), and stability in the presence of station mobility, physical obstructions, and antenna misalignment. In order to evaluate 802.11ad, early generation platforms from technology vendors were used in extensive test suites. The hardware tested included docks for wireless personal area networking (WPAN) applications, client laptop stations, and reference design access points (APs). Finally, a customized proof-of-concept (PoC) platform was engineered which allowed finer control over front end antenna configuration parameters such as: topology, placement and orienta- tion. The PoC also served as a suitable means to identify practical limitations and system design engineering challenges associated with supporting directional multi-Gbps (DMG) communication in the 60 GHz band

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Classroom Technology: Practical Approaches Synchronous Blended Learning Using Videoconferencing over lP Planning for Classroom Audiovisual Technologies Optimization Tools lmprove Bandwidth Bottom Line New Technologies Redefine the Classroom WiMax Facing the WMAN Challenge Mobility and the New Student lntegrating lnstructional and Network Technologies for Distance Education lnstitutional Excellence Award Honorable Mention Interview President\u27s Message From the Executive Director Here\u27s My Advic

    A comparative investigation on the application and performance of Femtocell against Wi-Fi networks in an indoor environment

    Get PDF
    Due to the strenuous demands on the available spectrum and bandwidth, alongside the ever increasing rate at which data traffic is growing and the poor quality of experience QoE) faced with indoor communications, in order for cellular networks to remain dominant in areas pertaining to voice and data services, cellular service providers have to reform their marketing and service delivery strategies together with their overall network rchitecture. To accomplish this leap forward in performance, cellular service operators need to employ a network topology, which makes use of a mix of macrocells and small cells, effectively evolving the network, bringing it closer to the end-­‐user. This investigation explores the use of small cell technology, specifically Femtocell technology in comparison to the already employed Wi-­‐Fi technology as a viable solution to poor indoor communications.The performance evolution is done by comparing key areas in the every day use of Internet communications. These include HTTP testing, RTP testing and VoIP testing. Results are explained and the modes of operation of both technologies are compared
    • 

    corecore