36 research outputs found

    Congestion-Free Rerouting of Flows on DAGs

    Get PDF
    Changing a given configuration in a graph into another one is known as a reconfiguration problem. Such problems have recently received much interest in the context of algorithmic graph theory. We initiate the theoretical study of the following reconfiguration problem: How to reroute k unsplittable flows of a certain demand in a capacitated network from their current paths to their respective new paths, in a congestion-free manner? This problem finds immediate applications, e.g., in traffic engineering in computer networks. We show that the problem is generally NP-hard already for k=2 flows, which motivates us to study rerouting on a most basic class of flow graphs, namely DAGs. Interestingly, we find that for general k, deciding whether an unsplittable multi-commodity flow rerouting schedule exists, is NP-hard even on DAGs. Our main contribution is a polynomial-time (fixed parameter tractable) algorithm to solve the route update problem for a bounded number of flows on DAGs. At the heart of our algorithm lies a novel decomposition of the flow network that allows us to express and resolve reconfiguration dependencies among flows

    Dynamic Adaptation of Software-defined Networks for IoT Systems: A Search-based Approach

    Get PDF
    The concept of Internet of Things (IoT) has led to the development of many complex and critical systems such as smart emergency management systems. IoT-enabled applications typically depend on a communication network for transmitting large volumes of data in unpredictable and changing environments. These networks are prone to congestion when there is a burst in demand, e.g., as an emergency situation is unfolding, and therefore rely on configurable software-defined networks (SDN). In this paper, we propose a dynamic adaptive SDN configuration approach for IoT systems. The approach enables resolving congestion in real time while minimizing network utilization, data transmission delays and adaptation costs. Our approach builds on existing work in dynamic adaptive search-based software engineering (SBSE) to reconfigure an SDN while simultaneously ensuring multiple quality of service criteria. We evaluate our approach on an industrial national emergency management system, which is aimed at detecting disasters and emergencies, and facilitating recovery and rescue operations by providing first responders with a reliable communication infrastructure. Our results indicate that (1) our approach is able to efficiently and effectively adapt an SDN to dynamically resolve congestion, and (2) compared to two baseline data forwarding algorithms that are static and non-adaptive, our approach increases data transmission rate by a factor of at least 3 and decreases data loss by at least 70%

    Rerouting Planar Curves and Disjoint Paths

    Get PDF
    In this paper, we consider a transformation of k disjoint paths in a graph. For a graph and a pair of k disjoint paths ? and ? connecting the same set of terminal pairs, we aim to determine whether ? can be transformed to ? by repeatedly replacing one path with another path so that the intermediates are also k disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when k = 2. On the other hand, we prove that, when the graph is embedded on a plane and all paths in ? and ? connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint s-t paths as a variant. We show that the disjoint s-t paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general

    Coeus: Consistent and Continuous Network Update in Software-Defined Networks:38th IEEE Conference on Computer Communications, INFOCOM 2020

    Get PDF
    Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance via southbound APIs. The single update between the initial and the final network states fail to handle high-frequency changes or the burst event during the update procedure in time, leading to prolonged update time and inefficiency. On the contrary, the continuous update can respond to the network condition changes at all times. However, existing work, especially Update Algebra can only guarantee blackhole- and loop-free. The congestion-free property cannot be respected during the update procedure. In this paper, we propose Coeus, a continuous network update system while maintaining blackhole-, loop- and congestion-free simultaneously. Firstly, we establish an operation-based continuous update model. Based on this model, we dynamically reconstruct an operation dependency graph to capture unexecuted update operations and the link utilization variations. Subsequently, we develop an operation composition algorithm to eliminate redundant update commands and an operation node partition algorithm to speed up the update procedure. We prove that the partition algorithm is optimal and can guarantee the consistency. Finally, extensive evaluations show that Coeus can improve the makespan by at least 179% compared with state-of-the-art approaches when the arrival rate of update events equals to three times per second. © 2020 IEEE

    Continuous Network Update With Consistency Guaranteed in Software-Defined Networks

    Get PDF
    Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance. The single update focuses on processing one update event at a time, i.e., updating a set of flows from their initial routes to target routes, but it fails to handle continuously arriving update events in time incurred by high-frequency network changes. On the contrary, the continuous update proposed in ``Update Algebra'' can handle multiple update events concurrently and respond to the network condition changes at all times. However, ``Update Algebra'' only guarantees the blackhole-free and loop-free update. The congestion-free property cannot be respected. In this paper, we propose Coeus to achieve the continuous update while maintaining consistency, i.e., ensuring the blackhole-free, loop-free, and congestion-free properties simultaneously. Firstly, we establish the continuous update model based on the update operations in update events. With the update model, we dynamically reconstruct the operation dependency graph (ODG) to capture the relationship between update operations and link utilization variations. Then, we develop a composition algorithm to eliminate redundant operations in update events. To further speed up the update procedure, we present a partition algorithm to split the operation nodes of the ODG into a series of suboperation nodes that can be executed independently. The partition algorithm is proven to be optimal. Finally, extensive evaluations show that Coeus can improve the update speed by at least 179% and reduce redundant operations by at least 52% compared with state-of-the-art approaches when the arrival rate of update events equals three times per second. IEE

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Loop-Free Route Updates for Software-Defined Networks

    Get PDF
    corecore