413 research outputs found

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    QoS-aware and Policy Based Mobile Data O oading

    Get PDF

    Investigation of quality of services (QoS) support for real-time or mission critical services over IEEE 802.11e wireless networks.

    Get PDF
    Multimedia application is currently making much impact in this technological era. It has been thekey driving force behind the convergence of fixed, mobile and IP networks. Furthermore, real-timeapplications are making head way in vehicular networks, mission critical applications which usededicated short range communications (DSRC). 802.l i e standards support quality of services(QoS) guarantees in these applications. This is opposed to the problem with 802.11 legacy whichis based on distributed coordination function (DCF), and its inability to prioritized applications forservice differentiation. Simulation was done on various 802.l i e networks which use enhancedDCF (EDCF). In these simulations, it was observed that controlling low priority applicationsenhances the effectiveness of high priority applications. Different MAC and traffic generationparameters were used in various scenarios. It was actually observed that high priority applicationshave greater impacts on the performance of the network and hence performs better when itcomes to delay and throughput requirements. Even when the number of high priority applicationswere reduced, the results obtained was still able to satisfy QoS requirements for each traffic type.Results for different scenarios were taken and discussed. Also, differentiated values of delay,throughput and packet loss were recorded when same and different values of MAC and trafficgeneration parameters were used. In all results the International Telecommunications Union (ITU-T) values of these metrics parameters were kept low. These make the network design suitable forroad safety application where very low delay is required for emergency messages and tolerabledelay in routine messages. The results obtained show th at, this network can be applicable inroad safety, simply because of the low delay, and low loss which implies , messages to cars canbe successfully delivered and also good throughput. 802.11 legacy standard lacks servicedifferentiation that limits QoS support for real-time applications. These simulations were able tohandle the drawback associated with this standard and prefer a better standard which is 802.l i ethat provides differentiated access to the metrics that was used in analyzing QoS in this research

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation

    Enhanced transport protocols for real time and streaming applications on wireless links

    Full text link
    Real time communications have, in the last decade, become a highly relevant component of Internet applications and services, with both interactive communications and streamed content being used in developed and developing countries alike. Due to the proliferation of mobile devices, wireless media is becoming the means of transmitting a large part of this increasingly important real time communications traffic. Wireless has also become an important technology in developing countries, with satellite communications being increasingly deployed for traffic backhaul and ubiquitous connection to the Internet. A number of issues need to be addressed in order to have an acceptable service quality for real time communications in wireless environments. In addition to this, the availability of multiple wireless interfaces on mobile devices presents an opportunity to improve and further exacerbates the issues already present on single wireless links. Therefore in this thesis, we consider improvements to transport protocols for real time communications and streaming services to address these problems and we provide the following contributions. To deal with wireless link issues of errors and delay, we propose two enhancements. First, an improvement technique for Datagram Congestion Control Protocol CCID4 for long delay wireless (e.g. satellite) links, demonstrating significant performance improvements for Voice over IP applications. To deal with link errors, we have proposed, implemented and evaluated an erasure coding based packet error correction approach for Concurrent Multipath Transfer extension of Stream Control Transport Protocol data transport over multiple wireless paths. We have identified packet reordering as a major cause of performance degradation in both single and multi-path transport protocols for real time communications and media streaming. We have proposed a dynamically resizable buffer based solution to mitigate this problem within the DCCP protocol. For improving the performance of multi-path transport protocols over dissimilar network paths, we have proposed a delay aware packet scheduling scheme, which significantly improves the performance of multimedia and bulk data transfer with CMT-SCTP in heterogeneous multi-path network scenarios. Finally, we have developed a tool for online streaming video quality evaluation experiments, comprising a real-time cross-layer video streaming technique implemented within an open-source H.264 video encoder tool called x264
    corecore