787 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    On the Interaction between TCP and the Wireless Channel in CDMA2000 Networks

    Full text link
    In this work, we conducted extensive active measurements on a large nationwide CDMA2000 1xRTT network in order to characterize the impact of both the Radio Link Protocol and more importantly, the wireless scheduler, on TCP. Our measurements include standard TCP/UDP logs, as well as detailed RF layer statistics that allow observability into RF dynamics. With the help of a robust correlation measure, normalized mutual information, we were able to quantify the impact of these two RF factors on TCP performance metrics such as the round trip time, packet loss rate, instantaneous throughput etc. We show that the variable channel rate has the larger impact on TCP behavior when compared to the Radio Link Protocol. Furthermore, we expose and rank the factors that influence the assigned channel rate itself and in particular, demonstrate the sensitivity of the wireless scheduler to the data sending rate. Thus, TCP is adapting its rate to match the available network capacity, while the rate allocated by the wireless scheduler is influenced by the sender's behavior. Such a system is best described as a closed loop system with two feedback controllers, the TCP controller and the wireless scheduler, each one affecting the other's decisions. In this work, we take the first steps in characterizing such a system in a realistic environment

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Performance analysis of an integrated CS/PS services CDMA system

    Get PDF
    An analytical model is developed to investigate integrated CS/PS CDMA cellular systems with SIR-based power control. Because packet data are not very sensitive to delay, a defer-first-transmission transmission mode is usually applied to packet data transmission. In the mixed CS/PS environment, link-level congestion control is designed to delay packet data, if necessary, to guarantee real-time delivery quality for CS traffic such as voice and CS data. In interference-limited CDMA cellular systems, because interference (both intracell and intercell) is the limit to spectral efficiency, congestion control is driven by the total received interference level at the BS. With congestion control at link level and SIR-based power control, the intracell and intercell interferences are closely related to each other. A recursive process is developed to evaluate the performance of such a CDMA system. Numerical results such as system capacity and data delay, both with and without power control error considered, are presented.Peer Reviewe

    Characterizing CDMA downlink feasibility via effective interference

    Get PDF
    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Although the obtained relation is non-linear, it basically provides an effective interference characterisation of downlink feasibility. Our results allow for a fast evaluation of outage and blocking probabilities, and enable a quick evaluation of feasibility that may be used for Call Acceptance Control. \u

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A multiple-choice knapsack based algorithm for CDMA downlink rate differentiation under uplink coverage restrictions

    Get PDF
    This paper presents an analytical model for downlink rate allocation in Code Division Multiple Access (CDMA) mobile networks. By discretizing the coverage area into small segments, the transmit power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression for the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for a given downlink rate allocation. Based on the Perron-Frobenius eigenvalue, we reduce the downlink rate allocation problem to a set of multiple-choice knapsack problems. The solution of these problems provides an approximation of the optimal downlink rate allocation and cell borders for which the system throughput, expressed in terms of downlink rates, is maximized. \u

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate

    Power control for WCDMA

    Get PDF
    This project tries to introduce itself in the physical implementations that make possible the denominated third generation mobile technology. As well as to know the technology kind that makes possible, for example, a video-call in real time. During this project, the different phases passed from the election of WCDMA like the access method for UMTS will appear. Its coexistence with previous network GSM will be analyzed, where the compatibility between systems has been one of the most important aspects in the development of WCDMA, the involved standardization organisms in the process, as well as the different protocols that make the mobile communications within a network UTRAN possible. Special emphasis during the study of the great contribution that has offered WCDMA with respect to the control of power of the existing signals will be made. The future lines that are considered in the present, and other comment that already are in their last phase of development in the field of the mobile technology. UMTS through WCDMA can be summarized like a revolution of the air interface accompanied by a revolution in the network of their architecture
    corecore