7,462 research outputs found

    Smooth Inequalities and Equilibrium Inefficiency in Scheduling Games

    Full text link
    We study coordination mechanisms for Scheduling Games (with unrelated machines). In these games, each job represents a player, who needs to choose a machine for its execution, and intends to complete earliest possible. Our goal is to design scheduling policies that always admit a pure Nash equilibrium and guarantee a small price of anarchy for the l_k-norm social cost --- the objective balances overall quality of service and fairness. We consider policies with different amount of knowledge about jobs: non-clairvoyant, strongly-local and local. The analysis relies on the smooth argument together with adequate inequalities, called smooth inequalities. With this unified framework, we are able to prove the following results. First, we study the inefficiency in l_k-norm social costs of a strongly-local policy SPT and a non-clairvoyant policy EQUI. We show that the price of anarchy of policy SPT is O(k). We also prove a lower bound of Omega(k/log k) for all deterministic, non-preemptive, strongly-local and non-waiting policies (non-waiting policies produce schedules without idle times). These results ensure that SPT is close to optimal with respect to the class of l_k-norm social costs. Moreover, we prove that the non-clairvoyant policy EQUI has price of anarchy O(2^k). Second, we consider the makespan (l_infty-norm) social cost by making connection within the l_k-norm functions. We revisit some local policies and provide simpler, unified proofs from the framework's point of view. With the highlight of the approach, we derive a local policy Balance. This policy guarantees a price of anarchy of O(log m), which makes it the currently best known policy among the anonymous local policies that always admit a pure Nash equilibrium.Comment: 25 pages, 1 figur

    CSMA Local Area Networking under Dynamic Altruism

    Full text link
    In this paper, we consider medium access control of local area networks (LANs) under limited-information conditions as befits a distributed system. Rather than assuming "by rule" conformance to a protocol designed to regulate packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game framework and build a dynamic altruism term into the net utility. The effects of altruism are analyzed at Nash equilibrium for both the ALOHA and CSMA frameworks in the quasistationary (fictitious play) regime. We consider either power or throughput based costs of networking, and the cases of identical or heterogeneous (independent) users/players. In a numerical study we consider diverse players, and we see that the effects of altruism for similar players can be beneficial in the presence of significant congestion, but excessive altruism may lead to underuse of the channel when demand is low

    Load Balancing Congestion Games and their Asymptotic Behavior

    Get PDF
    A central question in routing games has been to establish conditions for the uniqueness of the equilibrium, either in terms of network topology or in terms of costs. This question is well understood in two classes of routing games. The first is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus a unique equilibrium. The second framework is splitable atomic games: there are finitely many players, each controlling the route of a population of individuals (let them be cars in road traffic or packets in the communication networks). In this paper, we study two other frameworks of routing games in which each of several players has an integer number of connections (which are population of packets) to route and where there is a constraint that a connection cannot be split. Through a particular game with a simple three link topology, we identify various novel and surprising properties of games within these frameworks. We show in particular that equilibria are non unique even in the potential game setting of Rosenthal with strictly convex link costs. We further show that non-symmetric equilibria arise in symmetric networks. I. INTRODUCTION A central question in routing games has been to establish conditions for the uniqueness of the equilibria, either in terms of the network topology or in terms of the costs. A survey on these issues is given in [1]. The question of uniqueness of equilibria has been studied in two different frameworks. The first, which we call F1, is the non-atomic routing introduced by Wardrop on 1952 in the context of road traffic in which each player (car) is infinitesimally small; a single car has a negligible impact on the congestion. Each car wishes to minimize its expected delay. Under arbitrary topology, such games are known to have a convex potential and thus have a unique equilibrium [2]. The second framework, denoted by F2, is splitable atomic games. There are finitely many players, each controlling the route of a population of individuals. This type of games have already been studied in the context of road traffic by Haurie and Marcotte [3] but have become central in the telecom community to model routing decisions of Internet Service Providers that can decide how to split the traffic of their subscribers among various routes so as to minimize network congestion [4]. In this paper we study properties of equilibria in two other frameworks of routing games which exhibit surprisin

    Budget-restricted utility games with ordered strategic decisions

    Full text link
    We introduce the concept of budget games. Players choose a set of tasks and each task has a certain demand on every resource in the game. Each resource has a budget. If the budget is not enough to satisfy the sum of all demands, it has to be shared between the tasks. We study strategic budget games, where the budget is shared proportionally. We also consider a variant in which the order of the strategic decisions influences the distribution of the budgets. The complexity of the optimal solution as well as existence, complexity and quality of equilibria are analyzed. Finally, we show that the time an ordered budget game needs to convergence towards an equilibrium may be exponential

    A game theoretic approach to a peer-to-peer cloud storage model

    Full text link
    Classical cloud storage based on external data providers has been recognized to suffer from a number of drawbacks. This is due to its inherent centralized architecture which makes it vulnerable to external attacks, malware, technical failures, as well to the large premium charged for business purposes. In this paper, we propose an alternative distributed peer-to-peer cloud storage model which is based on the observation that the users themselves often have available storage capabilities to be offered in principle to other users. Our set-up is that of a network of users connected through a graph, each of them being at the same time a source of data to be stored externally and a possible storage resource. We cast the peer-to-peer storage model to a Potential Game and we propose an original decentralized algorithm which makes units interact, cooperate, and store a complete back up of their data on their connected neighbors. We present theoretical results on the algorithm as well a good number of simulations which validate our approach.Comment: 10 page

    Markov-Perfect Rent Dissipation in Rights-Based Fisheries

    Get PDF
    We present a general, dynamic model of within-season harvesting competition in a fishery managed with individual transferable quotas. Markov-Perfect equilibrium harvesting and quota purchase strategies are derived using numerical collocation methods. We identify rent loss caused by a heterogeneous-in-value fish stock, congestion on the fishing ground, revenue competition and stock uncertainty. Our results show that biological, technological and market conditions under which rents will be dissipated in a standard individual transferable quota program are fairly special. These findings provide new insights for designing rights-based programs capable of generating resource rent in marine fisheries.Markov Perfect Nash equilibrium; individual transferable quotas; production externalities; resource rent.
    corecore