69 research outputs found

    Congestion Games with Multisets of Resources and Applications in Synthesis

    Get PDF
    In classical congestion games, players\u27 strategies are subsets of resources. We introduce and study multiset congestion games, where players\u27 strategies are multisets of resources. Thus, in each strategy a player may need to use each resource a different number of times, and his cost for using the resource depends on the load that he and the other players generate on the resource. Beyond the theoretical interest in examining the effect of a repeated use of resources, our study enables better understanding of non-cooperative systems and environments whose behavior is not covered by previously studied models. Indeed, congestion games with multiset-strategies arise, for example, in production planing and network formation with tasks that are more involved than reachability. We study in detail the application of synthesis from component libraries: different users synthesize systems by gluing together components from a component library. A component may be used in several systems and may be used several times in a system. The performance of a component and hence the system\u27s quality depends on the load on it. Our results reveal how the richer setting of multisets congestion games affects the stability and equilibrium efficiency compared to standard congestion games. In particular, while we present very simple instances with no pure Nash equilibrium and prove tighter and simpler lower bounds for equilibrium inefficiency, we are also able to show that some of the positive results known for affine and weighted congestion games apply to the richer setting of multisets

    Dynamic resource allocation games

    Get PDF
    In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability

    LNCS

    Get PDF
    In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability

    Network-Formation Games with Regular Objectives

    Full text link
    Abstract. Classical network-formation games are played on a directed graph. Players have reachability objectives, and each player has to select a path satisfy-ing his objective. Edges are associated with costs, and when several players use the same edge, they evenly share its cost. The theoretical and practical aspects of network-formation games have been extensively studied and are well understood. We introduce and study network-formation games with regular objectives. In our setting, the edges are labeled by alphabet letters and the objective of each player is a regular language over the alphabet of labels, given by means of an automaton or a temporal-logic formula. Thus, beyond reachability properties, a player may restrict attention to paths that satisfy certain properties, referring, for example, to the providers of the traversed edges, the actions associated with them, their quality of service, security, etc. Unlike the case of network-formation games with reachability objectives, here the paths selected by the players need not be simple, thus a player may traverse some transitions several times. Edge costs are shared by the players with the share being proportional to the number of times the transition is traversed. We study the exis-tence of a pure Nash equilibrium (NE), convergence of best-response-dynamics, the complexity of finding the social optimum, and the inefficiency of a NE com-pared to a social-optimum solution. We examine several classes of networks (for example, networks with uniform edge costs, or alphabet of size 1) and several classes of regular objectives. We show that many properties of classical network-formation games are no longer valid in our game. In particular, a pure NE might not exist and the Price of Stability equals the number of players (as opposed to logarithmic in the number of players in the classic setting, where a pure NE al-ways exists). In light of these results, we also present special cases for which the resulting game is more stable.

    An abstraction-refinement methodology for reasoning about network games

    Get PDF
    Network games (NGs) are played on directed graphs and are extensively used in network design and analysis. Search problems for NGs include finding special strategy profiles such as a Nash equilibrium and a globally-optimal solution. The networks modeled by NGs may be huge. In formal verification, abstraction has proven to be an extremely effective technique for reasoning about systems with big and even infinite state spaces. We describe an abstraction-refinement methodology for reasoning about NGs. Our methodology is based on an abstraction function that maps the state space of an NG to a much smaller state space. We search for a global optimum and a Nash equilibrium by reasoning on an under- and an over-approximation defined on top of this smaller state space. When the approximations are too coarse to find such profiles, we refine the abstraction function. We extend the abstraction-refinement methodology to labeled networks, where the objectives of the players are regular languages. Our experimental results demonstrate the effectiveness of the methodology

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Passengers, Crowding and Complexity : Models for passenger oriented public transport

    Get PDF
    Passengers, Crowding and Complexity was written as part of the Complexity in Public Transport (ComPuTr) project funded by the Netherlands Organisation for Scientific Research (NWO). This thesis studies in three parts how microscopic data can be used in models that have the potential to improve utilization, while preventing excess crowding. _In the first part_, the emergence of crowding caused by interactions between the behavior of passengers and the public transport operators who plan the vehicle capacities is modeled. Using simulations the impact of the information disclosed to the passengers by public transport operators on the utilization and passenger satisfaction is analyzed. A quasi-experiment with a large group of students in a similar setting finds that four types of behavior can be observed. _In the second part_, algorithms that can extract temporal and spatial patterns from smart card data are developed and a first step to use such patterns in an agent based simulation is made. Furthermore, a way to generate synthetic smart card data is proposed. This is useful for the empirical validation of algorithms that analyze such data. _In the third and final part_ it is considered how individual decision strategies can be developed in situations where there exists uncertainty ab

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems
    • …
    corecore