2,682 research outputs found

    A General Class of Throughput Optimal Routing Policies in Multi-hop Wireless Networks

    Full text link
    This paper considers the problem of throughput optimal routing/scheduling in a multi-hop constrained queueing network with random connectivity whose special case includes opportunistic multi-hop wireless networks and input-queued switch fabrics. The main challenge in the design of throughput optimal routing policies is closely related to identifying appropriate and universal Lyapunov functions with negative expected drift. The few well-known throughput optimal policies in the literature are constructed using simple quadratic or exponential Lyapunov functions of the queue backlogs and as such they seek to balance the queue backlogs across network independent of the topology. By considering a class of continuous, differentiable, and piece-wise quadratic Lyapunov functions, this paper provides a large class of throughput optimal routing policies. The proposed class of Lyapunov functions allow for the routing policy to control the traffic along short paths for a large portion of state-space while ensuring a negative expected drift. This structure enables the design of a large class of routing policies. In particular, and in addition to recovering the throughput optimality of the well known backpressure routing policy, an opportunistic routing policy with congestion diversity is proved to be throughput optimal.Comment: 31 pages (one column), 8 figures, (revision submitted to IEEE Transactions on Information Theory

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Joint Congestion and Contention Avoidance in a Scalable QoS-Aware Opportunistic Routing in Wireless Ad-Hoc Networks

    Get PDF
    Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR\u27s performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows\u27 Quality of Service (QoS) level, and the channel occupancy rate. Simulation results show that the proposed algorithm outperforms the state-of-the-art algorithms in the context of OR congestion control in terms of average throughput, end-to-end delay, and Packet Delivery Ratio (PDR). Due to the higher PDR at different traffic loads and different node densities, it can be concluded that the proposed algorithm also improves network scalability, which is very desirable given the recent changes in wireless networks
    • …
    corecore