24,772 research outputs found

    Conformance Testing as Falsification for Cyber-Physical Systems

    Full text link
    In Model-Based Design of Cyber-Physical Systems (CPS), it is often desirable to develop several models of varying fidelity. Models of different fidelity levels can enable mathematical analysis of the model, control synthesis, faster simulation etc. Furthermore, when (automatically or manually) transitioning from a model to its implementation on an actual computational platform, then again two different versions of the same system are being developed. In all previous cases, it is necessary to define a rigorous notion of conformance between different models and between models and their implementations. This paper argues that conformance should be a measure of distance between systems. Albeit a range of theoretical distance notions exists, a way to compute such distances for industrial size systems and models has not been proposed yet. This paper addresses exactly this problem. A universal notion of conformance as closeness between systems is rigorously defined, and evidence is presented that this implies a number of other application-dependent conformance notions. An algorithm for detecting that two systems are not conformant is then proposed, which uses existing proven tools. A method is also proposed to measure the degree of conformance between two systems. The results are demonstrated on a range of models

    Towards more accurate real time testing

    Get PDF
    The languages Message Sequence Charts (MSC) [1], System Design Language1 (SDL) [2] and Testing and Test Control Notation Testing2 (TTCN-3) [3] have been developed for the design, modelling and testing of complex software systems. These languages have been developed to complement one another in the software development process. Each of these languages has features for describing, analysing or testing the real time properties of systems. Robust toolsets exist which provide integrated environments for the design, analysis and testing of systems, and it is claimed, for the complete development of real time systems. It was shown in [4] however, that there are fundamental problems with the SDL language and its associated tools for modelling and reasoning about real time systems. In this paper we present the limitations of TTCN-3 and propose recommendations which help minimise the timing inaccuracies that would otherwise occur in using the language directly

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts
    • …
    corecore