70 research outputs found

    Renormalization group flows of Hamiltonians using tensor networks

    Get PDF
    A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization ([G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)], [S. Yang, Z.-C. Gu, and X.-G Wen, Phys. Rev. Lett. 118, 110504 (2017)]) we obtain approximate fixed point tensor networks at criticality. Our formalism however preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.Comment: accepted version for Phys. Rev. Lett, main text: 5 pages, 3 figures, appendices: 9 pages, 1 figur

    Conformal Group Recommender System

    Full text link
    Group recommender systems (GRS) are critical in discovering relevant items from a near-infinite inventory based on group preferences rather than individual preferences, like recommending a movie, restaurant, or tourist destination to a group of individuals. The traditional models of group recommendation are designed to act like a black box with a strict focus on improving recommendation accuracy, and most often, they place the onus on the users to interpret recommendations. In recent years, the focus of Recommender Systems (RS) research has shifted away from merely improving recommendation accuracy towards value additions such as confidence and explanation. In this work, we propose a conformal prediction framework that provides a measure of confidence with prediction in conjunction with a group recommender system to augment the system-generated plain recommendations. In the context of group recommender systems, we propose various nonconformity measures that play a vital role in the efficiency of the conformal framework. We also show that defined nonconformity satisfies the exchangeability property. Experimental results demonstrate the effectiveness of the proposed approach over several benchmark datasets. Furthermore, our proposed approach also satisfies validity and efficiency properties.Comment: 23 page

    HCF-CRS: A Hybrid Content based Fuzzy Conformal Recommender System for providing recommendations with confidence

    Get PDF
    A Recommender System (RS) is an intelligent system that assists users in finding the items of their interest (e.g. books, movies, music) by preventing them to go through huge piles of data available online. In an effort to overcome the data sparsity issue in recommender systems, this research incorporates a content based filtering technique with fuzzy inference system and a conformal prediction approach introducing a new framework called Hybrid Content based Fuzzy Conformal Recommender System (HCF-CRS). The proposed framework is implemented to be used in the domain of movies and it provides quality recommendations to users with a confidence level and an improved accuracy. In our proposed framework, first, a Content Based Filtering (CBF) technique is applied to create a user profile by considering the history of each user. CBF is useful in the situations like: lack of demographic information and the data sparsity problems. Second, a Fuzzy based technique is incorporated to find the similarities and differences between the user profile and the movies in the dataset using a set of fuzzy rules to get a predicted rating for each movie. Third, a Conformal prediction algorithm is implemented to calculate the non-conformity measure between the predicted ratings produced by fuzzy system and the actual ratings from the dataset. A p-value (confidence measure) is computed to give a level of confidence to each recommended item and a bound is set on the confidence level called a significance level ε, according to which the movies only above the specified significance level are recommended to user. By building a confidence centric hybrid conformal recommender system using the content based filtering approach with fuzzy logic and conformal prediction algorithm, the reliability and the accuracy of the system is considerably enhanced. The experiments are evaluated on MovieLens and Movie Tweetings datasets for recommending movies to the users and they are compared with other state-of-the-art recommender systems. Finally, the results confirm that the proposed algorithms perform better than the traditional ones

    Recommender systems in antiviral drug discovery

    Get PDF
    Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: Collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery

    Presentation Bias in movie recommendation algorithms

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization Information Analysis and ManagementThe emergence of video on demand (VOD) has transformed the way the content finds its audience. Several improvements have been made on algorithms to provide better movie recommendations to individuals. Given the huge variety of elements that characterize a film (such as casting, genre, soundtrack, amongst others artistic and technical aspects) and that characterize individuals, most of the improvements relied on accomplishing those characteristics to do a better job regarding matching potential clients to each product. However, little attention has been given to evaluate how the algorithms’ result selection are affected by presentation bias. Understanding bias is key to choosing which algorithms will be used by the companies. The existence of a system with presentation bias and feedback loop is already a problem stated by Netflix. In this sense, this research will fill that gap providing a comparative analysis of the bias of the major movie recommendation algorithms

    Industry-scale application and evaluation of deep learning for drug target prediction

    Get PDF
    Artificial intelligence (AI) is undergoing a revolution thanks to the breakthroughs of machine learning algorithms in computer vision, speech recognition, natural language processing and generative modelling. Recent works on publicly available pharmaceutical data showed that AI methods are highly promising for Drug Target prediction. However, the quality of public data might be different than that of industry data due to different labs reporting measurements, different measurement techniques, fewer samples and less diverse and specialized assays. As part of a European funded project (ExCAPE), that brought together expertise from pharmaceutical industry, machine learning, and high-performance computing, we investigated how well machine learning models obtained from public data can be transferred to internal pharmaceutical industry data. Our results show that machine learning models trained on public data can indeed maintain their predictive power to a large degree when applied to industry data. Moreover, we observed that deep learning derived machine learning models outperformed comparable models, which were trained by other machine learning algorithms, when applied to internal pharmaceutical company datasets. To our knowledge, this is the first large-scale study evaluating the potential of machine learning and especially deep learning directly at the level of industry-scale settings and moreover investigating the transferability of publicly learned target prediction models towards industrial bioactivity prediction pipelines.Web of Science121art. no. 2

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    An Intelligent Context Aware Recommender System for Real-Estate

    Get PDF
    Finding products and items in large online space that meet user needs is difficult. Time spent searching before finding a relevant item can be a significant time sink for users. As with other economic branches, growing Internet usage also changed user behavior in the real-estate market. Advancements in virtual reality offer virtual tours and interactive map and floor plans which make an online rental websites very popular among users. With the abundance of information, recommender systems become more important than ever to give the user relevant property suggestions and reduce search time. A sophisticated recommender in this domain can help reduce the need of a real-estate agent. Session-based user behavior and lack of user profiles leads to the use of traditional recommendation methods. In this research, we propose an approach for real-estate recommendation based on Gated Orthogonal Recurrent Unit (GORU) and Weighted Cosine Similarity. GORU captures the user search context and weighted cosine similarity improves the rank of pertinent property. We have used the data of an online public real estate web portal (AARZ.PK). The data represents the original behavior of the user on an online portal. We have used Recall, User coverage and Mean Reciprocal Rank (MRR) metrics for the evaluation of our system against other state-of-the-art techniques. The proposed solution outperforms various baselines and state-of-the-art RNN based solutions
    corecore