255 research outputs found

    Route planning of automated guided vehicles for container logistics

    Get PDF
    Automated guided vehicles (AGVs) are widely used in container terminals for the movement of material from shipping to the yard area and vice versa. Research in this area is directed toward the development of a path layout design and routing algorithms for container movement. The problem is to design a path layout and a routing algorithm that will route the AGVs along the bi-directional path so that the distance traveled will be minimized. This thesis presents a bi-directional path flow layout and a routing algorithm that guarantee conflict-free, shortest time routes for AGVs. Based on the path layout, a routing algorithm and sufficient, but necessary conditions, mathematical relationships are developed among certain key parameters of vehicle and path. A high degree of concurrency is achieved in the vehicle movement. The routing efficiency is analyzed in terms of the distance traveled and the time required for AGVs to complete all pickup and drop-off jobs. Numerical results are presented to compare performance of the proposed model. The research provides the foundation for a bi-directional path layout design and routing algorithms that will aid the designer to develop complicated path layouts

    INNOVATIVE SIMULATION AND OPTIMIZATION STUDIES ON GRID SYSTEM FOR TRANSSHIPMENT TERMINAL

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    CONTAINER STACKING YARD OPTIMUM UTILIZATION ANALYSIS OF OPERATOR AND USER ORIENTATION (CASE STUDY PT. PELABUHAN INDONESIA IV)

    Get PDF
    Stacking yard is one of seaport???s main facilities to store containers and to prevent from ship???s delay risk which affects in decreasing of loading and discharging productivity and increasing of ships and cargoes time in seaport. One of the indicators used for Port development plan is by using stacking yard utilization level (YOR). \ud PT (Persero) Pelindo IV manages 19 seaports in Indonesia East Region which serve 10 provinces such as 5 provinces in Sulawesi, one province in east of Kalimantan, and 4 provinces in Maluku and Papua Island. Total area for those provinces are 865.284 km2, equal with 45.76% from Indonesia total area or almost half of total area of Indonesia. During 1999-2010, containers??? traffic rate of PT (Persero) Pelindo IV has increased 15,61% per year (average). During period 2000-2010 general cargo type is decreased from 33.9% in 2000 became 7.16% in 2010, as for container type is increased from 11.18% in 2000 became 41.91% in 2010. \ud The purpose of this research is to analyze optimum stacking yard???s level of utilization based on operator and user. This research carries out optimization methods by minimizing total cost expenses for operator and user. The result of this research shows that the average of stacking yard???s level of utilization in 2010 is 58%, while the average of optimum stacking yard level of utilization is 85%

    Control of free-ranging automated guided vehicles in container terminals

    Get PDF
    Container terminal automation has come to the fore during the last 20 years to improve their efficiency. Whereas a high level of automation has already been achieved in vertical handling operations (stacking cranes), horizontal container transport still has disincentives to the adoption of automated guided vehicles (AGVs) due to a high degree of operational complexity of vehicles. This feature has led to the employment of simple AGV control techniques while hindering the vehicles to utilise their maximum operational capability. In AGV dispatching, vehicles cannot amend ongoing delivery assignments although they have yet to receive the corresponding containers. Therefore, better AGV allocation plans would be discarded that can only be achieved by task reassignment. Also, because of the adoption of predetermined guide paths, AGVs are forced to deploy a highly limited range of their movement abilities while increasing required travel distances for handling container delivery jobs. To handle the two main issues, an AGV dispatching model and a fleet trajectory planning algorithm are proposed. The dispatcher achieves job assignment flexibility by allowing AGVs towards to container origins to abandon their current duty and receive new tasks. The trajectory planner advances Dubins curves to suggest diverse optional paths per origin-destination pair. It also amends vehicular acceleration rates for resolving conflicts between AGVs. In both of the models, the framework of simulated annealing was applied to resolve inherent time complexity. To test and evaluate the sophisticated AGV control models for vehicle dispatching and fleet trajectory planning, a bespoke simulation model is also proposed. A series of simulation tests were performed based on a real container terminal with several performance indicators, and it is identified that the presented dispatcher outperforms conventional vehicle dispatching heuristics in AGV arrival delay time and setup travel time, and the fleet trajectory planner can suggest shorter paths than the corresponding Manhattan distances, especially with fewer AGVs.Open Acces

    Automatic Routing System for Intelligent Warehouses

    Full text link
    Automation of logistic processes is essential to improve productivity and reduce costs. In this context, intelligent warehouses are becoming a key to logistic systems thanks to their ability of optimizing transportation tasks and, consequently, reducing costs. This paper initially presents briefly routing systems applied on intelligent warehouses. Then, we present the approach used to develop our router system. This router system is able to solve traffic jams and collisions, generate conflict-free and optimized paths before sending the final paths to the robotic forklifts. It also verifies the progress of all tasks. When a problem occurs, the router system can change the task priorities, routes, etc. in order to avoid new conflicts. In the routing simulations, each vehicle executes its tasks starting from a predefined initial pose, moving to the desired position. Our algorithm is based on Dijkstra's shortest path and the time window approaches and it was implemented in C language. Computer simulation tests were used to validate the algorithm efficiency under different working conditions. Several simulations were carried out using the Player/Stage Simulator to test the algorithms. Thanks to the simulations, we could solve many faults and refine the algorithms before embedding them in real robots.Comment: 2010 IEEE International Conference on Robotics and Automation, International workshop on Robotics and Intelligent Transportation System, Full Day Workshop, May 7th 2010, Anchorage, Alaska. Organizers,Christian Laugier (INRIA, France), Ming Lin (University of North Carolina, USA), Philippe Martinet IFMA and LASMEA, France),Urbano Nunes (ISR, Portugal

    DISPATCHING AND CONFLICT-FREE ROUTING OF VEHICLES IN NEW CONCEPTUAL AUTOMATED CONTAINER TERMINALS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Rescheduling policies for large-scale task allocation of autonomous straddle carriers under uncertainty at automated container terminals

    Full text link
    This paper investigates replanning strategies for container-transportation task allocation of autonomous Straddle Carriers (SC) at automated container terminals. The strategies address the problem of large-scale scheduling in the context of uncertainty (especially uncertainty associated with unexpected events such as the arrival of a new task). Two rescheduling policies-Rescheduling New arrival Jobs (RNJ) policy and Rescheduling Combination of new and unexecuted Jobs (RCJ) policy-are presented and compared for long-term Autonomous SC Scheduling (ASCS) under the uncertainty of new job arrival. The long-term performance of the two rescheduling policies is evaluated using a multi-objective cost function (i.e., the sum of the costs of SC travelling, SC waiting, and delay of finishing high-priority jobs). This evaluation is conducted based on two different ASCS solving algorithms-an exact algorithm (i.e., branch-and-bound with column generation (BBCG) algorithm) and an approximate algorithm (i.e., auction algorithm)-to get the schedule of each short-term planning for the policy. Based on the map of an actual fully-automated container terminal, simulation and comparative results demonstrate the quality advantage of the RCJ policy compared with the RNJ policy for task allocation of autonomous straddle carriers under uncertainty. Long-term testing results also show that although the auction algorithm is much more efficient than the BBCG algorithm for practical applications, it is not effective enough, even when employed by the superior RCJ policy, to achieve high-quality scheduling of autonomous SCs at the container terminals. © 2013 Elsevier B.V. All rights reserved

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    Simulation analysis of container terminal capacity at multi-terminal Indonesia(MIT)

    Get PDF
    corecore