678 research outputs found

    Keyword Search on RDF Graphs - A Query Graph Assembly Approach

    Full text link
    Keyword search provides ordinary users an easy-to-use interface for querying RDF data. Given the input keywords, in this paper, we study how to assemble a query graph that is to represent user's query intention accurately and efficiently. Based on the input keywords, we first obtain the elementary query graph building blocks, such as entity/class vertices and predicate edges. Then, we formally define the query graph assembly (QGA) problem. Unfortunately, we prove theoretically that QGA is a NP-complete problem. In order to solve that, we design some heuristic lower bounds and propose a bipartite graph matching-based best-first search algorithm. The algorithm's time complexity is O(k2ll3l)O(k^{2l} \cdot l^{3l}), where ll is the number of the keywords and kk is a tunable parameter, i.e., the maximum number of candidate entity/class vertices and predicate edges allowed to match each keyword. Although QGA is intractable, both ll and kk are small in practice. Furthermore, the algorithm's time complexity does not depend on the RDF graph size, which guarantees the good scalability of our system in large RDF graphs. Experiments on DBpedia and Freebase confirm the superiority of our system on both effectiveness and efficiency

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page

    Graph Algorithms and Applications

    Get PDF
    The mixture of data in real-life exhibits structure or connection property in nature. Typical data include biological data, communication network data, image data, etc. Graphs provide a natural way to represent and analyze these types of data and their relationships. Unfortunately, the related algorithms usually suffer from high computational complexity, since some of these problems are NP-hard. Therefore, in recent years, many graph models and optimization algorithms have been proposed to achieve a better balance between efficacy and efficiency. This book contains some papers reporting recent achievements regarding graph models, algorithms, and applications to problems in the real world, with some focus on optimization and computational complexity

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    Railway Timetable Optimization

    Get PDF
    In this cumulative dissertation, we study several aspects of railway timetable optimization. The first contributions cover Practical Applications of Automatic Railway Timetabling. In particular, for the problem of simultaneously scheduling all freight trains in Germany such that there are no conflicts between them, we propose a novel column generation approach. Each train can choose from an iteratively growing set of possible routes and times, so called slots. For the task of choosing maximally many slots without conflicts, we present and apply the heuristic algorithm Conflict Resolving (CR). With these two methods, we are able to schedule more than 5000 trains simultaneously, exceeding the scopes of other studies. A second practical application that we study is measuring the capacity increase in the railway network when equipping freight trains with electro-pneumatic brakes and middle buffer couplings. Methodically, we propose to explicitly construct as many slots as possible for such trains and measure the capacity as the number of constructed slots. Furthermore, we contribute to the field of Algorithms and Computability in Timetable Generation. We present two heuristic solution algorithms for the Maximum Satisfiability Problem (MaxSAT). In the literature, it has been proposed to encode different NP-complete problems that occur in railway timetabling in MaxSAT. In numerical experiments, we prove that our algorithms are competitive to state-of-the-art MaxSAT solvers. Moreover, we study the parameterized complexity status of periodic scheduling and give proofs that the problem is NP-complete for input graphs of bounded treewidth, branchwidth and carvingwidth. Finally, we propose a framework for analyzing Delay Propagation in Railway Networks. More precisely, we develop delay transmission rules based on different correlation measures that can be derived from historical operations data. What is more, we apply SHAP values from Explainable AI to the problem of discerning primary delays that occur stochastically in the operations, to secondary follow-up delays. Transmission rules that are derived from the secondary delays indicate where timetable adjustments are needed. In our last contribution in this field, we apply such adjustment rules for black-box optimization of timetables in a simulation environment

    Efficient Automated Planning with New Formulations

    Get PDF
    Problem solving usually strongly relies on how the problem is formulated. This fact also applies to automated planning, a key field in artificial intelligence research. Classical planning used to be dominated by STRIPS formulation, a simple model based on propositional logic. In the recently introduced SAS+ formulation, the multi-valued variables naturally depict certain invariants that are missed in STRIPS, make SAS+ have many favorable features. Because of its rich structural information SAS+ begins to attract lots of research interest. Existing works, however, are mostly limited to one single thing: to improve heuristic functions. This is in sharp contrast with the abundance of planning models and techniques in the field. On the other hand, although heuristic is a key part for search, its effectiveness is limited. Recent investigations have shown that even if we have almost perfect heuristics, the number of states to visit is still exponential. Therefore, there is a barrier between the nice features of SAS+ and its applications in planning algorithms. In this dissertation, we have recasted two major planning paradigms: state space search and planning as Satisfiability: SAT), with three major contributions. First, we have utilized SAS+ for a new hierarchical state space search model by taking advantage of the decomposable structure within SAS+. This algorithm can greatly reduce the time complexity for planning. Second, planning as Satisfiability is a major planning approach, but it is traditionally based on STRIPS. We have developed a new SAS+ based SAT encoding scheme: SASE) for planning. The state space modeled by SASE shows a decomposable structure with certain components independent to others, showing promising structure that STRIPS based encoding does not have. Third, the expressiveness of planning is important for real world scenarios, thus we have also extended the planning as SAT to temporally expressive planning and planning with action costs, two advanced features beyond classical planning. The resulting planner is competitive to state-of-the-art planners, in terms of both quality and performance. Overall, our work strongly suggests a shifting trend of planning from STRIPS to SAS+, and shows the power of formulating planning problems as Satisfiability. Given the important roles of both classical planning and temporal planning, our work will inspire new developments in other advanced planning problem domains

    Quantum Algorithm for Variant Maximum Satisfiability

    Get PDF
    In this paper, we proposed a novel quantum algorithm for the maximum satisfiability problem. Satisfiability (SAT) is to find the set of assignment values of input variables for the given Boolean function that evaluates this function as TRUE or prove that such satisfying values do not exist. For a POS SAT problem, we proposed a novel quantum algorithm for the maximum satisfiability (MAX-SAT), which returns the maximum number of OR terms that are satisfied for the SAT-unsatisfiable function, providing us with information on how far the given Boolean function is from the SAT satisfaction. We used Grover’s algorithm with a new block called quantum counter in the oracle circuit. The proposed circuit can be adapted for various forms of satisfiability expressions and several satisfiability-like problems. Using the quantum counter and mirrors for SAT terms reduces the need for ancilla qubits and realizes a large Toffoli gate that is then not needed. Our circuit reduces the number of ancilla qubits for the terms T of the Boolean function from T of ancilla qubits to ≈⌈log2⁡T⌉+1. We analyzed and compared the quantum cost of the traditional oracle design with our design which gives a low quantum cost
    corecore