3,975 research outputs found

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    The UV Upturn in Elliptical Galaxies as an Age Indicator

    Full text link
    We show that the UV flux of old stellar systems can tell us about their ages. Two independent populations synthesis groups that have had wildly different views have here worked together and generated two solutions that can be easily tested using space telescopes. Proposed tests will constrain the ages of giant Es, that are often considered the oldest populations in the universe, and thus cosmology.Comment: LaTeX and 11 eps figures Accepted for publication in Ap

    Optimizing Heap Data Management on Software Managed Manycore Architectures

    Get PDF
    abstract: Caches pose a serious limitation in scaling many-core architectures since the demand of area and power for maintaining cache coherence increases rapidly with the number of cores. Scratch-Pad Memories (SPMs) provide a cheaper and lower power alternative that can be used to build a more scalable many-core architecture. The trade-off of substituting SPMs for caches is however that the data must be explicitly managed in software. Heap management on SPM poses a major challenge due to the highly dynamic nature of of heap data access. Most existing heap management techniques implement a software caching scheme on SPM, emulating the behavior of hardware caches. The state-of-the-art heap management scheme implements a 4-way set-associative software cache on SPM for a single program running with one thread on one core. While the technique works correctly, it suffers from signifcant performance overhead. This paper presents a series of compiler-based efficient heap management approaches that reduces heap management overhead through several optimization techniques. Experimental results on benchmarks from MiBenchGuthaus et al. (2001) executed on an SMM processor modeled in gem5Binkert et al. (2011) demonstrate that our approach (implemented in llvm v3.8Lattner and Adve (2004)) can improve execution time by 80% on average compared to the previous state-of-the-art.Dissertation/ThesisMasters Thesis Computer Science 201

    Slicing of Concurrent Programs and its Application to Information Flow Control

    Get PDF
    This thesis presents a practical technique for information flow control for concurrent programs with threads and shared-memory communication. The technique guarantees confidentiality of information with respect to a reasonable attacker model and utilizes program dependence graphs (PDGs), a language-independent representation of information flow in a program

    Recursive tree traversal dependence analysis

    Get PDF
    While there has been much work done on analyzing and transforming regular programs that operate over linear arrays and dense matrices, comparatively little has been done to try to carry these optimizations over to programs that operate over heap-based data structures using pointers. Previous work has shown that point blocking, a technique similar to loop tiling in regular programs, can help increase the temporal locality of repeated tree traversals. Point blocking, however, has only been shown to work on tree traversals where each traversal is fully independent and would allow parallelization, greatly limiting the types of applications that this transformation could be applied to.^ The purpose of this study is to develop a new framework for analyzing recursive methods that perform traversals over trees, called tree dependence analysis. This analysis translates dependence analysis techniques for regular programs to the irregular space, identifying the structure of dependences within a recursive method that traverses trees. In this study, a dependence test that exploits the dependence structure of such programs is developed, and is shown to be able to prove the legality of several locality— and parallelism-enhancing transformations, including point blocking. In addition, the analysis is extended with a novel path-dependent, conditional analysis to refine the dependence test and prove the legality of transformations for a wider range of algorithms. These analyses are then used to show that several common algorithms that manipulate trees recursively are amenable to several locality— and parallelism-enhancing transformations. This work shows that classical dependence analysis techniques, which have largely been confined to nested loops over array data structures, can be extended and translated to work for complex, recursive programs that operate over pointer-based data structures

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization
    • 

    corecore