32 research outputs found

    Adaptive Fringe Projection and Error-Compensated Calibration for Compact 3D Shape-Measurement Systems

    Get PDF
    Measurement of the three-dimensional (3-D) shape of an object is needed for both industrial and consumer applications. In industrial applications, compact measurement systems are needed to accomplish certain tasks such as measuring an interior surface in a confined space. In consumer applications, compact measurement systems are also needed for common consumers to conveniently get access to 3D data for a wide range of everyday uses. Fringe-projection techniques have been increasingly used for 3D shape measurement due to the advantage of dense full-field measurement. For a camera-projector measurement system, system geometry (the relative camera-projector position and angle) determine the system compactness. Analysis of the relation of system geometry to measurement accuracy is challenging owing to the effect of the various factors that vary with system geometry on measurement accuracy. It is thus necessary to experimentally determine how measurement accuracy varies with system geometry, in order to determine the most compact design that satisfies a desired measurement accuracy. This has been achieved in a compactness study, in which the measurement accuracy is evaluated at different relative camera-projector positions and angles. Measurement results in the compactness study have shown that there is a tradeoff in loss of accuracy for increased compactness and loss of compactness for increased accuracy. The smallest camera-projector angle (for an industrial system) or the smallest physical distance between the camera and projector (for a consumer system) that satisfies the desired accuracy would provide the most compact design. Several new methods including 1) an improved heterodyne phase-unwrapping method, 2) an adaptive fringe-pattern projection (AFPP) method for surfaces of high variation in reflectivity and illumination, and 3) a pixel-wise adaptive fringe-pattern projection (PWAFPP) method for such surfaces, have been developed in this research to improve measurement accuracy, thus contributing to enable a more compact system design to achieve a desired measurement accuracy. First, the new improved heterodyne phase-unwrapping method detects and compensates for the spike-like errors in absolute phase maps. The method has demonstrated improved projector calibration accuracy from 18.2 to 0.2 pixels, thus ensuring usable camera-projector stereovision system calibration for 3D measurement. Second, the new AFPP method adapts the projector maximum input gray levels (MIGLs) to local surface reflectivity using only two prior fringe-pattern projection and image-capture rounds. The method demonstrated greatly improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation of captured fringe patterns across the entire surface with large range in reflectivity. Third, the new PWAFPP method projects a MIGL adapted to the surface reflectivity and illuminance for each pixel. The method has demonstrated a 34% root-mean-square (RMS) error reduction in 3D measurement for pixels that remained saturated after applying the AFPP method. The new method can thus be used to measure surfaces with more complex variation in surface reflectivity

    Optically Induced Nanostructures

    Get PDF
    Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    LSST Science Book, Version 2.0

    Full text link

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore