37,026 research outputs found

    Case Study - IPv6 based building automation solution integration into an IPv4 Network Service Provider infrastructure

    Get PDF
    The case study presents a case study describing an Internet Protocol (IP) version 6 (v6) introduction to an IPv4 Internet Service Provider (ISP) network infrastructure. The case study driver is an ISP willing to introduce a new “killer” service related to Internet of Things (IoT) style building automation. The provider and cooperation of third party companies specialized in building automation will provide the service. The ISP has to deliver the network access layer and to accommodate the building automation solution traffic throughout its network infrastructure. The third party companies are system integrators and building automation solution vendors. IPv6 is suitable for such solutions due to the following reasons. The operator can’t accommodate large number of IPv4 embedded devices in its current network due to the lack of address space and the fact that many of those will need clear 2 way IP communication channel. The Authors propose a strategy for IPv6 introduction into operator infrastructure based on the current network architecture present service portfolio and several transition mechanisms. The strategy has been applied in laboratory with setup close enough to the current operator’s network. The criterion for a successful experiment is full two-way IPv6 application layer connectivity between the IPv6 server and the IPv6 Internet of Things (IoT) cloud

    Distributed service orchestration : eventually consistent cloud operation and integration

    Get PDF
    Both researchers and industry players are facing the same obstacles when entering the big data field. Deploying and testing distributed data technologies requires a big up-front investment of both time and knowledge. Existing cloud automation solutions are not well suited for managing complex distributed data solutions. This paper proposes a distributed service orchestration architecture to better handle the complex orchestration logic needed in these cases. A novel service-engine based approach is proposed to cope with the versatility of the individual components. A hybrid integration approach bridges the gap between cloud modeling languages, automation artifacts, image-based schedulers and PaaS solutions. This approach is integrated in the distributed data experimentation platform Tengu, making it more flexible and robust

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot
    corecore