495 research outputs found

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool

    Get PDF
    A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay

    Full Automation of Air Traffic Management in High Complexity Airspace

    Get PDF
    The thesis is that automation of en-route Air Traffic Management in high complexity airspace can be achieved with a combination of automated tactic planning in a look-ahead time horizon of up to two hours complemented with automated tactic conflict resolution functions. The literature review reveals that no significant results have yet been obtained and that full automation could be approached with a complementary integration of automated tactic resolutions AND planning. The focus shifts to ‘planning for capacity’ and ‘planning for resolution’ and also – but not only – for ‘resolution’. The work encompasses a theoretical part on planning, and several small scale studies of empirical, mathematical or simulated nature. The theoretical part of the thesis on planning under uncertainties attempts to conceive a theoretical model which abstracts specificities of planning in Air Traffic Management into a generic planning model. The resulting abstract model treats entities like the planner, the strategy, the plan and the actions, always considering the impact of uncertainties. The work innovates in specifying many links from the theory to the application in planning of air traffic management, and especially the new fields of tactical capacity management. The second main part of the thesis comprises smaller self-containing works on different aspects of the concept grouped into a section on complexity, another on tactic planning actions, and the last on planners. The produced studies are about empirical measures of conflicts and conflict densities to get a better understanding of the complexity of air traffic; studies on traffic organisation using tactical manoeuvres like speed control, lateral offset and tactical direct using fast time simulation; and studies on airspace design like sector optimisation, dynamic sectorisation and its optimisation using optimisation techniques. In conclusion it is believed that this work will contribute to further automation attempts especially by its innovative focus which is on planning, base on a theory of planning, and its findings already influence newer developments

    DEMAND-RESPONSIVE AIRSPACE SECTORIZATION AND AIR TRAFFIC CONTROLLER STAFFING

    Get PDF
    This dissertation optimizes the problem of designing sector boundaries and assigning air traffic controllers to sectors while considering demand variation over time. For long-term planning purposes, an optimization problem of clean-sheet sectorization is defined to generate a set of sector boundaries that accommodates traffic variation across the planning horizon while minimizing staffing. The resulting boundaries should best accommodate traffic over space and time and be the most efficient in terms of controller shifts. Two integer program formulations are proposed to address the defined problem, and their equivalency is proven. The performance of both formulations is examined with randomly generated numerical examples. Then, a real-world application confirms that the proposed model can save 10%-16% controller-hours, depending on the degree of demand variation over time, in comparison with the sectorization model with a strategy that does not take demand variation into account. Due to the size of realistic sectorization problems, a heuristic based on mathematical programming is developed for a large-scale neighborhood search and implemented in a parallel computing framework in order to obtain quality solutions within time limits. The impact of neighborhood definition and initial solution on heuristic performance has been examined. Numerical results show that the heuristic and the proposed neighborhood selection schemes can find significant improvements beyond the best solutions that are found exclusively from the Mixed Integer Program solver's global search. For operational purposes, under given sector boundaries, an optimization model is proposed to create an operational plan for dynamically combining or splitting sectors and determining controller staffing. In particular, the relation between traffic condition and the staffing decisions is no longer treated as a deterministic, step-wise function but a probabilistic, nonlinear one. Ordinal regression analysis is applied to estimate a set of sector-specific models for predicting sector staffing decisions. The statistical results are then incorporated into the proposed sector combination model. With realistic traffic and staffing data, the proposed model demonstrates the potential saving in controller staffing achievable by optimizing the combination schemes, depending on how freely sectors can combine and split. To address concerns about workload increases resulting from frequent changes of sector combinations, the proposed model is then expanded to a time-dependent one by including a minimum duration of a sector combination scheme. Numerical examples suggest there is a strong tradeoff between combination stability and controller staffing

    Enhanced air traffic flow and capacity management under trajectory based operations considering traffic complexity

    Get PDF
    Tesi amb menció internacional.(English) The Air Traffic Flow and Capacity Management (ATFCM) aims at maintaining the forecast traffic demand below the estimated capacity in airports and airspace sectors. The purpose is to maintain the workload of the air traffic controllers under safe limits and avoid overloaded situations. At present, the demand and the capacity management initiatives are deployed separately. Given a forecast traffic demand, the different air navigation service providers allocate their air traffic control resources providing the airspace sectorisations. Then, the network manager addresses the remaining overloads by allocating delay using the CASA algorithm based on a ration-by-schedule principle. It should be noted that some ad-hoc flights might be re-rerouted or limited in cruise altitude in order to avoid congested airspace by submitting a new flight plan. Hence, the previously chosen sectorisations may be not optimum once the demand management initiatives are deployed. Moreover, the flexibility of the airspace users is limited since they cannot express their preferences. Furthermore, the demand and the capacity are currently measured using entry counts as proxy of the air traffic control workload, which is rather easy to measure or estimate. Yet, this metric cannot evaluate the difficulty to handle different traffic patterns inside the sectors leading to the use of capacity buffers. This PhD focuses on overcoming the limitations of the current ATFCM system outlined before by the introduction of complexity metrics (instead of entry counts) in order to measure the traffic load, the better consideration of the airspace users preferences allowing the possibility of submitting alternative trajectories to avoid congested airspace, and the holistic integration of the demand and capacity management into the same optimisation problem. First, the integration of two capacity management initiatives, i.e. Dynamic Airspace Configuration (DAC) and Flight Centric ATC (FCA), is studied proving some benefits when such integration is dynamic. Next, a new concept of operation is proposed where the airspace users have the option of submitting alternative trajectories and the network manager is the responsible for the demand management (delay allocation and choice of the used trajectory) and the capacity management (selection of the airspace sectorisation), considering a network-wide optimisation. This concept of operations is mathematically modelled with two Demand and Capacity Balancing (DCB) models addressing only demand management and three holistic DCB models where the demand and the capacity management measures are considered together in the same optimisation problem. A first model aims at choosing the best trajectory and delay allocation per flight while analysing the traffic load with entry counts at traffic volume level. It is solved in a realistic case study using the historical regulations providing a 76.84% of reduction in the arrival delay if compared to the current system.(Català) La gestió dels fluxos de trànsit i de la capacitat (ATFCM) té com a objectiu mantenir la demanda de trànsit prevista per sota de la capacitat estimada dels aeroports i els sectors de l’espai aeri. Actualment, les iniciatives de gestió de la demanda i de gestió de la capacitat es duen a terme separadament. Donada una previsió de trànsit, els diferents proveïdors de serveis de navegació aèria assignen els seus recursos proporcionant les sectoritzacions de l’espai aeri. Després l’administrador de la xarxa tracta les sobrecàrregues restants mitjançant l’assignació de retards utilitzant l'algoritme CASA, basat en l'ordenació per ordre d’arribada. A alguns vols també se’ls pot canviar la ruta o se’ls pot restringit l’altitud del creuer per tal d’evitar zones congestionades requerint la presentació d’un nou pla de vol. Així doncs, les sectoritzacions prèviament escollides poden ser no òptimes una vegada s’implementin les iniciatives de gestió de la demanda. A més, la flexibilitat dels usuaris de l’espai aeri és limitada ja que no poden expressar les seves preferències. Altrament, la demanda i la capacitat es mesuren actualment comptant el nombre d’arribades com a proxy de la càrrega de treball del control del trànsit aeri. No obstant això, aquesta mètrica no pot evaluar la dificultat de gestionar diferents patrons de trànsit dins els sectors, la qual cosa condueix a la utilització de marges de capacitat. Aquest PhD es centra en superar les limitacions de l’actual sistema d’ATFCM indicades anteriorment mitjançant la introducció de mètrics de complexitat (en lloc del número d’arribades) per a mesurar el trànsit, la millor consideració de les preferències dels usuaris de l’espai aeri permetent la possibilitat d’utilitzar trajectories alternatives per a evitar la congestió de l’espai aeri, i la integració holística de la gestió de la demanda i de la capacitat en el mateix problema d’optimització. Primer, s’estudia la integració de dues iniciatives de gestió de la capacitat: DAC i FCA. S’obtenen beneficis quan la integració és dinàmica. Després, es proposa un nou concepte operacional on els usuaris de l’espai aeri tenen l'opció de proposar trajectories alternatives i l’administrador de la xarxa és el responsable de la gestió de la demanda (assignació de retards i elecció de la trajectòria utilitzada) i de la capacitat (selecció de la sectorització de l’espai aeri) considerant l’optimització de tota la xarxa. Aquest concepte operacional es formula amb dos models de DCB que aborden només la gestió de la demanda i tres models holístics on la gestió de la demanda i de la capacitat es consideren conjuntament en el mateix problema d’optimització. Un primer model es centra en escollir la millor trajectòria i assignació de retard per vol, mentre que el trànsit s'avalua mitjançant el número d’arribades als volums de trànsit. Es resol un cas d’estudi realista on s’utilitzen les regulacions històriques aconseguint un 76.84% menys de retard a l'arribada si es compara amb els sistema actual. Un dels tres models holístics de s’estudia en detall, en concret el que utilitza mètriques de complexitat i optimitza les sectoritzacions de l’espai aeri escollint entre un seguit de configuracions disponibles. Aquest model es tracta amb un nou mètode híbrid presentat en aquest PhD i que combina la simulació del recuit i la programació dinàmica. En un primer cas d'estudi, aquest nou mètode es compara amb el mètode exacte resolt amb Gurobi proporcionant un millor rendiment principalment quan la dificultat del problema augmenta. En un segon cas d’estudi es realitza un estudi de sensibilitat del paràmetre que modela una penalització per a diferents configuracions consecutives. Finalment, es resol un escenari a gran escala amb el mètode híbrid proporcionant un 74.01% menys de retard a l'arribada i un 28.47% menys en el cost de la sectorització resultant en comparació amb un escenari de referència que representa les millors condicions del sistema actual.(Español) La gestión de los flujos de tráfico y de la capacidad (ATFCM) pretende mantener la demanda de tráfico prevista por debajo de la capacidad estimada de los aeropuertos y los sectores del espacio aéreo. Actualmente, las iniciativas de gestión de la demanda y de la capacidad se implementan por separado. Ante una previsión de tráfico, los diferentes proveedores de servicios de navegación aérea asignan sus recursos proporcionando las sectorizaciones del espacio aéreo. Después, el administrador de la red trata las sobrecargas restantes mediante la asignación de retrasos utilizando el algoritmo CASA basado en un principio de ordenación por orden de llegada. A algunos vuelos también se les puede cambiar de ruta o limitar la altitud de crucero para evitar la congestión del espacio aéreo requiriendo de un nuevo plan de vuelo. Así pues, las sectorizaciones elegidas anteriormente pueden no ser óptimas una vez que se implementen las iniciativas de gestión de la demanda. Adicionalmente, la flexibilidad de los usuarios del espacio aéreo es limitada ya que no pueden expresar sus preferencias. Además, la demanda y la capacidad se miden actualmente contando el número de llegadas como proxy de la carga de trabajo del control del tráfico aéreo. Sin embargo, esta métrica no puede evaluar la dificultad de controlar diferentes patrones de tráfico dentro de los sectores lo que conduce al uso de márgenes de capacidad. Este PhD se centra en superar las limitaciones del sistema de ATFCM actual descritas anteriormente mediante la introducción de métricas de complejidad (en lugar del número de llegadas) para medir la carga de tráfico, la mejor consideración de las preferencias de los usuarios del espacio aéreo permitiendo la posibilidad de la presentación de trayectorias alternativas para evitar la congestión, y la integración holística de la gestión de la demanda y de la capacidad en un mismo problema de optimización. Primero, se estudia la integración de dos iniciativas de gestión de la capacidad, DAC y FCA, demostrando beneficios cuando dicha integración es dinámica. A continuación, se propone un nuevo concepto operacional donde los usuarios del espacio aéreo tienen la opción de presentar trayectorias alternativas y el administrador de la red es el responsable de la gestión de la demanda (asignación de retrasos y elección de la trayectoria utilizada) y la gestión de la capacidad (selección de la sectorización), considerando una optimización de toda la red. Este concepto operacional se modela con dos modelos de DCB que abordan sólo la gestión de la demanda y tres modelos holísticos donde las medidas de gestión de la demanda y de la capacidad se consideran conjuntamente en el mismo problema de optimización. Un primer modelo pretende elegir la mejor asignación de trayectoria y retraso por vuelo mientras se analiza la carga de tráfico con el número de llegadas a nivel de volumen de tráfico. Se resuelve un caso de estudio utilizando las regulaciones históricas proporcionando un 76.84% de reducción en el retraso en la llegada si se compara con el sistema actual. El model holístico que utiliza métricas de complejidad y optimiza las sectorizaciones del espacio aéreo escogiendo entre un conjunto de configuraciones disponibles se estudia en detalle. Este modelo se trata con un nuevo método híbrido basado en el recocido simulado y la programación dinámica. En un primer caso de estudio, se compara este nuevo método con el método exacto resuelto con Gurobi proporcionando un mejor rendimiento cuando aumenta la dificultad del problema. En un segundo caso de estudio se realiza un estudio de sensibilidad del parámetro que modela una penalización para diferentes configuraciones consecutivas. Finalmente, se resuelve un escenario a gran escala con el método Híbrido proporcionando menores valores de retraso en llegada y menores costes en la sectorización resultante en comparación con un escenario de referencia que representa las mejores condiciones del sistema actual.Postprint (published version

    Methodology for Predicting Sector Capacity in Convective Weather Conditions

    Get PDF
    Convective weather conditions limit airspace capacity and increase the complexity of air traffic. Currently, air nav-igation service providers calculate sector capacity using air traffic controller workload as reference. The aim of the research is to propose a method for predicting sector capacity in convective weather using air traffic complexity model. In this proposal existing air traffic complexity model should be remodeled to enable finer resolution of com-plexity results. Also, the model should be upgraded with a new type of indicator showing aircraft-weather interactions. The adopted air traffic complexity model, in combination with the trajectory prediction model and the Weather En-semble Forecast, should be able to provide a statistical characterisation of sector capacity under impending convec-tive weather conditions

    User Selection Criteria of Airspace Designs in Flexible Airspace Management

    Get PDF
    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses

    Support to Design for Air Traffic Management: An Approach with Agent-Based Modelling and Evolutionary Search

    Get PDF
    This paper presents a methodology to manage the support to design in ATM operations. We propose a workflow for the design of ATM solutions in a performance-based setting. The methodology includes the evaluation of the impact on human behaviour and exploits a combination of different paradigms, such as Agent-Based Modelling and Simulation, and Agent-Based Evolutionary Search. We prove the soundness of the methodology by carrying out a real case study, which is the transition from Direct Routing to Free Routing in the Italian airspace. The validation results exhibit limited errors for the assessment of the performance metrics under evaluation. Furthermore, the optimization of sector collapsing/decollapsing configuration is discussed to demonstrate the effectiveness of the implemented engines

    Sectorization and Configuration Transition in Airspace Design

    Get PDF

    Support to Design for Air Traffic Management: An Approach with Agent-Based Modelling and Evolutionary Search

    Get PDF
    To enhance Air Traffic Management (ATM) and meet the future traffic demand and environmental requirements, present ATM system is going to be modified (SESAR Joint Undertaking, 2017), designing new services to be integrated in future architecture considering the evolution of present fragmented structure of the airspace and the entanglement of air routes. Such a change process is complicated due to the nature of ATM, which is a large-scale Socio-Technical System (STS), typically involving a complex interaction between humans, machines and the environment. In such kind of systems, managing their evolution is a complex and difficult task since the social and technical implications of any proposed concept should be fully assessed before a choice is made whether or not to proceed with the related development. Often, simulation tools are also used to support the design of the concept itself by enabling what-if-analyses. However, these may be too effort and time consuming due to the exponential growth of the required analysis cases. A quite common mismatch between the performance evaluations in simulated conditions and those achieved in real life is represented by the partial assessment of human aspects that can be performed throughout the new concept lifecycle from its lowest maturity level up to “ready to market”. The proposed work defines an approach to support the design of new ATM solutions, including the evaluation on human behaviour. The approach adopts a combined paradigm, which involves Agent-Based Modelling and Simulation (ABMS) to specify and analyse the ATM models, and Agent-based Evolutionary Search (AES) to optimize the design of the new solutions. A specific case study is used to demonstrate the effectiveness of the proposed approach. Transition from Direct Routing Airspace (DRA) to Free Routing Airspace (FRA), respectively described by Solution #32 and Solution #33 in the SESAR solutions catalogue (SESAR Joint Undertaking, 2017), is used for both validation and experimentation activities. In detail, the proposed experimentation case regards the design of sector collapsing/decollapsing configuration to optimize controller workloads. The achieved results are presented and discussed
    corecore