844 research outputs found

    Contributions to smart grids based on renewable energy sources with hydrogen as backup system. Energy management system: design, modeling and physical implementation based on model predictive control theory

    Get PDF
    Atendiendo al concepto de Smart Grid (Red Inteligente), estos sistemas están íntimamente relacionados con el uso de los sistemas de generación renovable. A pesar de los beneficios de esta tecnología, su dependencia de los recursos ambientales hace imposible garantizar el balance de energía entre generación y demanda en todo momento. Para ello, la hibridación de sistemas, así como el uso de sistemas basados en hidrógeno, se muestra como una solución técnica viable para resolver o mitigar los problemas asociados a este tipo de tecnologías. El empleo de este tipo de sistemas híbridos plantea una mayor complejidad en materia de gestión debido a la elevada cantidad de parámetros y factores a tener en cuenta de cara a garantizar un óptimo reparto energético en función de la aplicación y el estado energético del sistema. En este sentido, han de considerarse ciertos aspectos asociados a la operación real de los sistemas, tales como la topología del sistema, costes de operación y mantenimiento, la necesidad de un control de tensión de carga para baterías, la degradación de los equipos, la dinámica de cada sistema, las pérdidas asociadas al punto de trabajo, o parámetros relacionados con la calidad del suministro eléctrico. A tenor de lo anterior, es necesario el empleo de estrategias de gestión de la energía que permitan determinar el reparto energético entre dispositivos, con el objetivo de optimizar la respuesta del sistema desde el punto de vista técnico y económico, planteándose por lo tanto un problema de optimización multiobjetivo. Para dar respuesta al problema de optimización multiobjetivo propuesto, en la presente Tesis, se hace uso de una arquitectura de control distribuida, compuesta en un primer nivel por controladores locales, y en el nivel superior, se propone el uso de un controlador supervisor basado en técnicas de control predictivo (MPC). La función principal del controlador propuesto es determinar la consigna de operación de cada uno de los equipos que componen la Smart Grid, dando respuesta a la función objetivo propuesta de acuerdo a los criterios de diseño del sistema. Las ventajas de la utilización de técnicas de control predictivo respecto a otro tipo de técnicas son claras; permite el empleo de técnicas de control multivariable, permitiendo plantear problemas de optimización multiobjetivo con restricciones; así como implementar una estrategia de control basado en un horizonte de predicción, lo que permite al sistema adaptar la respuesta del controlador en base a acontecimientos futuros, mejorando la respuesta del sistema frente a técnicas de control meramente pasivas. Como base de conocimientos del controlador propuesto, en esta tesis se presenta un modelo lineal discreto generalista de la planta, calculado en cada periodo de muestreo, en base a una linealización recursiva, lo que permite aument ar la calidad del modelo respecto a soluciones basadas en torno a un único punto de linealización. El modelo incluye todos los parámetros necesarios para el control de una planta real, incluyendo los términos asociados al estado energético del sistema, tensión de operación de baterías, así como los parámetros técnicos y económicos. tales como degradación. oérdidas o coste de operación con el obietivo de definir una función de coste del sistema que permita su generalidad para cualquier tipo de aplicación u objetivo de diseño. Atendiendo al diseño del controlador propuesto, y con el objetivo de garantizar la generalidad requerida en todo el proceso, en la presente tesis se propone una metodología de diseño basado en el modelo propuesto y una función de coste que incluye todos los parámetros técnicos y económicos necesarios para resolver el problema de optimización multiobjetivo propuesto, independientemente de la aplicación y topología del sistema. Esta función objetivo permite establecer un problema de tracking de acuerdo al balance de potencia instantáneo del sistema, a la vez que son considerados los parámetros técnicos y económicos asociados a la respuesta del sistema, véase degradación y rendimiento de equipos, límites y dinámica de operación, costes de operación y mantenimiento, criterios de carga de baterías, etc. Para garantizar la generalidad del controlador propuesto, fomentando así su uso, independientemente de la aplicación y topología del sistema, en la presente tesis se propone una metodología de diseño y tuning de los parámetros del controlador, de acuerdo a la función objetivo propuesta y los criterios de diseño en materia de prioridad de uso y distribución de energía entre equipos. La propuesta metodológica está basada en las relaciones causa-efecto entre los distintos parámetros, las cuales permiten definir el comportamiento del sistema de acuerdo a la estrategia de gestión de la energía y objetivos de diseño propuestos. De forma similar, con el objetivo de considerar la optimización a corto y largo plazo del sistema, limitada por el concepto de horizonte deslizante propio de las técnicas de control predictivo, se hace uso de técnicas de control adicionales, las cuales actúan directamente sobre el proceso de ajuste de los parámetros del controlador. En este sentido, en base a la historia del sistema, se recalculan los parámetros del controlador, en caso de que sea necesario, actuándose directamente sobre los parámetros de ponderación, de tal forma que permita adaptar la respuesta dinámica o reparto energético de acuerdo a los criterios de diseño del controlador. Finalmente, la metodología de diseño y el controlador propuesto fueron validados sobre la micro red experimental del grupo de investigación TEP-192. Para ello, fue necesario el diseño, desarrollo e implementación de toda la electrónica de control, adquisición y electrónica de potencia para la correcta operación e integración de los equipos.Attending to the concept of Smart Grid, these systems are closely related to the use of renewable generation systems. Despite the benefits of this technology, its dependence on environmental resources makes it impo ssible to guarantee the balance of energy between generation and demand at all times. Far this, the hybridization of systems, as well as the use of hydrogen-basedsystems, is shown as a viable technical solution to salve or mitigate the probel ms associated with this type of technologies. The use of this type of hybrid systems poses a greater compel xity in terms of managementdue to the high number of parameters and factors to be taken into account in arder to guarantee an optimal energy distribution dependingon the application and the energy status of the system. In this sense, certain aspects associated with the actual operation of the systems, such as the topology, the operating and maintenance costs, the need far a charge voltage control far batterie s, the degradation of equipment, dynamics of each system, the lossesassociated with the working point, or parameters related to the quality of the electricity supply.In the light of the above, it is necessary to use energy management strategies to determine the energy distribution between devices, in arder to optimize the response of the system from a technicaland economic point of view, thereforeposing a multi-objective optimization problem. In arder to respond to the proposed multiobjective optimization problem, in this Thesis, a distributed control architecture is used, composed of local controllers at th e first level, and at the top level, the use of a supervisory controlel r based on predictive control techniques (MPC). The main function of the proposed controlel r is to det ermine the operating setpoint of each of the equipment that makes up the Smart Grid, responding to the proposed objective function accordingto the system design criteria. The advantages of using predictive control techniques over other types of techniques are clear; allows the use of multivariable control techniques, allowing multiobjective optimization in constrained problems; as well as implementing a control strategy based on a prediction horizon, which allows the system to adapt the response of the controller based on future events, improvingthe response of the system against merely passive control techniques. As a knowledge base of the proposed controller, this Thesis presents a general discrete linear model of the plant, calculated in each sampling period, based on a recursive linearization, which allows to increase the quality of the model with respectto solutions based on lathe to a singlepoint of linearization. The model includes all the necessary parameters far the control of a real plant, including the terms associated with the energy status of the system, battery operating voltage, as well as technical and economic parameters, such as degradation, losses or operating cost, with the objective of defining a system cost function that allows its generality far any type of application or design objective. Based on the design of the proposed controller, and with the objective of guaranteeing the generality required throuqhout the orocess. in this Thesis a desian methodoloav basedon the orooosed model and a cost function that includes ali the necessary technical and economic parameters are proposed to solve the proposed multiobjective optimization problem, regardless of the application and system topology. This objective function allows to establish a tracking problem according to the instantaneous power balance of the system, while the technical and economic parameters associated with the system response are considered, see equipment degradation and performance, limits and operating dynamics, operation and maintenance costs, battery charging criteria, etc. To guarantee the generality of the proposed controller, thus promoting its use, regardless of the application and topology of the system, this Thesis proposes a design and tuning methodology of the controller parameters, according to the proposed objective function and the design criteria in terms of priority of use and energy distribution. The methodological proposal is based on the cause-effect relationships between the different parameters, which allow defining the behavior of the system according to the energy management strategy and proposed design objectives. Similarly, in order to consider the short and long-term optimization of the system, limited by the concept of the sliding horizon typical of predictive control techniques, additional control techniques are used, which act directly on the process of adjustment of the parameters of the controller. In this sense, based on the history of the system, the parameters of the controller are recalculated, if necessary, acting directly on the weighting parameters, in such a way that it allows adapting the dynamic response or energy distribution according to the controller design criteria. Finally, the design methodology and the proposed controller were validated on the experimental micro grid of the TEP-192 research group. For this, it was necessary to design, develop and implement ali the control, acquisition and power electronics for the correct operation and integration of the equipment

    Integration of air-cooled multi-stack polymer electrolyte fuel cell systems into renewable microgrids

    Get PDF
    Currently, there is a growing interest in increasing the power range of air-cooled fuel cells (ACFCs), as they are cheaper, easier to use and maintain than water-cooled fuel cells (WCFCs). However, air-cooled stacks are only available up to medium power (<10 kW). Therefore, a good solution may be the development of ACFCs consisting of several stacks until the required power output is reached. This is the concept of air-cooled multi-stack fuel cell (AC-MSFC). The objective of this work is to develop a turnkey solution for the integration of AC-MSFCs in renewable microgrids, specifically those with high-voltage DC (HVDC) bus. This is challenging because the AC-MSFCs must operate in the microgrid as a single ACFC with adjustable power, depending on the number of stacks in operation. To achieve this, the necessary power converter (ACFCs operate at low voltages, so high conversion rates are required) and control loops must be developed. Unlike most designs in the literature, the proposed solution is compact, forming a system (AC-MSFCS) with a single input (hydrogen) and a single output (high voltage regulated power or voltage) that can be easily integrated into any microgrid and easily scalable depending on the power required. The developed AC-MSFCS integrates stacks, balance of plant, data acquisition and instrumentation, power converters and local controllers. In addition, a virtual instrument (VI) has been developed which, connected to the energy management system (EMS) of the microgrid, allows monitoring of the entire AC-MSFCS (operating temperature, purging, cell voltage monitoring for degradation evaluation, stacks operating point control and alarm and event management), as well as serving as a user interface. This allows the EMS to know the degradation of each stack and to carry out energy distribution strategies or specific maintenance actions, which improves efficiency, lifespan and, of course, saves costs. The experimental results have been excellent in terms of the correct operation of the developed AC-MSFCS. Likewise, the accumulated degradation of the stacks was quantified, showing cells with a degradation of >80%. The excellent electrical and thermal performance of the developed power converter was also validated, which allowed the correct and efficient supply of regulated power (average efficiency above 90%) to the HVDC bus, according to the power setpoint defined by the EMS of the microgrid.This research was funded by “H2Integration&Control. Integration and Control of a hydrogen-based pilot plant in residential applications for energy supply” Spanish Government, grant Ref: PID2020-116616RBC31,”; and “SALTES: Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority” by Andalusian Regional Program of R+D+, grant Ref: P20-00730

    Modular Power Electronic Converters in the Power Range 1 to 10 kW

    Get PDF

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Space Transportation Propulsion Technology Symposium. Volume 3: Panel Session Summaries and Presentations

    Get PDF
    The Space Transportation Propulsion Technology Symposium was held at the Pennsylvania State University on June 25 to 29, 1990. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps and other programmatic deficiencies. Key space transportation propulsion issues are addressed through four panels with government, industry, and academia membership. The panel focused on systems engineering and integration; development, manufacturing, and certification; operational efficiency; program development; and cultural issues

    NASA Tech Briefs, September 2011

    Get PDF
    Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering

    NASA Tech Briefs, June 1989

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Alternative Mission Concepts for the Exploration of Outer Planets Using Small Satellite Swarms

    Get PDF
    Interplanetary space exploration has thus far consisted of single, expensive spacecraft missions. Mission costs are particularly high on missions to the outer planets and while invaluable, finite budgets limit our ability to perform extensive and frequent investigations of the planets. Planetary systems such as Jupiter and Saturn provide extremely complex exploration environments with numerous targets of interest. Exploring these targets in addition to the main planet requires multiple fly-bys and long mission timelines. In LEO, CubeSats have changed the exploration paradigm, offering a fast and low cost alternative to traditional space vehicles. This new mission development philosophy has the potential to significantly change the economics of interplanetary exploration and a number of missions are being developed to utilize CubeSat class spacecraft beyond earth orbit (e.g., NEAScout, Lunar Ice Cube, Marco and BioSentinel). This paper takes the CubeSat philosophical approach one step further by investigating the potential for small satellite swarms to provide extensive studies of the Saturn system. To do this, an architecture was developed to best replicate the Cassini Primary Mission science objectives using swarms of CubeSats. Cassini was chosen because of its complexity and it defines a well-understood baseline to compare against. The paper outlines the overall mission architecture developed and provides a feasible initial design for the spacecraft in the architecture. The number of swarms needed, number of CubeSats per swarm, size of the CubeSats, overall science output and estimated mission cost are all presented. Additional science objectives beyond Cassini\u27s capabilities are also proposed. Significant scientific returns can be achieved by the swarm based architecture and the risk tolerance afforded by the utilization of large numbers of low-cost sensor carriers. This study found a potential architecture that could reduce the cost of replicating Cassini by as much as 63%. The results of this investigation are not constrained to Saturn and can be easily translated to other targets such as Uranus, Neptune or the asteroid belt

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports
    corecore