55,912 research outputs found

    Quantum error-correcting codes associated with graphs

    Full text link
    We present a construction scheme for quantum error correcting codes. The basic ingredients are a graph and a finite abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification of the 1-error correcting property of fivefold codes in any dimension. As new examples we construct a large class of codes saturating the singleton bound, as well as a tenfold code detecting 3 errors.Comment: 8 pages revtex, 5 figure

    New and Updated Semidefinite Programming Bounds for Subspace Codes

    Get PDF
    We show that A2(7,4)≤388A_2(7,4) \leq 388 and, more generally, Aq(7,4)≤(q2−q+1)[7]q+q4−2q3+3q2−4q+4A_q(7,4) \leq (q^2-q+1)[7]_q + q^4 - 2q^3 + 3q^2 - 4q + 4 by semidefinite programming for q≤101q \leq 101. Furthermore, we extend results by Bachoc et al. on SDP bounds for A2(n,d)A_2(n,d), where dd is odd and nn is small, to Aq(n,d)A_q(n,d) for small qq and small nn

    Construction of Almost Disjunct Matrices for Group Testing

    Full text link
    In a \emph{group testing} scheme, a set of tests is designed to identify a small number tt of defective items among a large set (of size NN) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a \emph{disjunct matrix}, an M×NM \times N matrix where the union of supports of any tt columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number MM of rows (tests). One of the main ways of constructing disjunct matrices relies on \emph{constant weight error-correcting codes} and their \emph{minimum distance}. In this paper, we consider a relaxed definition of a disjunct matrix known as \emph{almost disjunct matrix}. This concept is also studied under the name of \emph{weakly separated design} in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the \emph{average distance} of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Our second contribution is to explicitly construct almost disjunct matrices based on our average distance analysis, that have much smaller number of rows than any previous explicit construction of disjunct matrices. The parameters of our construction can be varied to cover a large range of relations for tt and NN.Comment: 15 Page

    Spin glass reflection of the decoding transition for quantum error correcting codes

    Get PDF
    We study the decoding transition for quantum error correcting codes with the help of a mapping to random-bond Wegner spin models. Families of quantum low density parity-check (LDPC) codes with a finite decoding threshold lead to both known models (e.g., random bond Ising and random plaquette Z2\Z2 gauge models) as well as unexplored earlier generally non-local disordered spin models with non-trivial phase diagrams. The decoding transition corresponds to a transition from the ordered phase by proliferation of extended defects which generalize the notion of domain walls to non-local spin models. In recently discovered quantum LDPC code families with finite rates the number of distinct classes of such extended defects is exponentially large, corresponding to extensive ground state entropy of these codes. Here, the transition can be driven by the entropy of the extended defects, a mechanism distinct from that in the local spin models where the number of defect types (domain walls) is always finite.Comment: 15 pages, 2 figure
    • …
    corecore