2,702 research outputs found

    On multi-objective optimization of planetary exploration rovers applied to ExoMars-type rovers

    Get PDF
    ExoMars is the first robotic mission of the Aurora program of the European Space Agency (EAS). Surface mobility (as provided by ExoMarks rover) is one of the enabling technologies necessary for future exploration missions. This work uses previouly developed mathematical models to represent an ExoMars rover operation in soft/rocky terrain. The models are used in an optimization loop to evaluate multiple objective functions affected by the change in geometrical design parameters. Several objective funktions can be used in our optimization environment powered by MOPS (Multi-Objective Parameter Synthesis). Two environments are used to simulate the rover in stability sensitive conditions and power and sinkage sensitive conditions. Finally, an ExoMars-like configuration is proposed and consistent improvemnt directions are pointed out

    Autonomous Locomotion Mode Transition Simulation of a Track-legged Quadruped Robot Step Negotiation

    Full text link
    Multi-modal locomotion (e.g. terrestrial, aerial, and aquatic) is gaining increasing interest in robotics research as it improves the robots environmental adaptability, locomotion versatility, and operational flexibility. Within the terrestrial multiple locomotion robots, the advantage of hybrid robots stems from their multiple (two or more) locomotion modes, among which robots can select from depending on the encountering terrain conditions. However, there are many challenges in improving the autonomy of the locomotion mode transition between their multiple locomotion modes. This work proposed a method to realize an autonomous locomotion mode transition of a track-legged quadruped robot steps negotiation. The autonomy of the decision-making process was realized by the proposed criterion to comparing energy performances of the rolling and walking locomotion modes. Two climbing gaits were proposed to achieve smooth steps negotiation behaviours for energy evaluation purposes. Simulations showed autonomous locomotion mode transitions were realized for negotiations of steps with different height. The proposed method is generic enough to be utilized to other hybrid robots after some pre-studies of their locomotion energy performances

    Design of an autonomous teleoperated cargo transporting vehicle for lunar base operations

    Get PDF
    At the turn of the century NASA plans to begin construction of a lunar base. The base will likely consist of developed areas (i.e., habitation, laboratory, landing and launching sites, power plant) separated from each other due to safety considerations. The Self-Repositioning Track Vehicle (SRTV) was designed to transport cargo between these base facilities. The SRTV operates by using two robotic arms to raise and position segments of track upon which the vehicle travels. The SRTV utilizes the semiautonomous mobility (SAM) method of teleoperation; actuator-controlled interlocking track sections; two robotic arms each with five degrees of freedom; and these materials: titanium for structural members and aluminum for shell members, with the possible use of light-weight, high-strength composites

    NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind

    Axel: A Minimalist Tethered Rover for Exploration of Extreme Planetary Terrains

    Get PDF
    Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic rover. Axel is a lightweight two-wheeled vehicle that can access steep terrains and negotiate relatively large obstacles because of its actively managed tether and novel wheel design. This article reviews the Axel system and focuses on those system components that affect Axel's steep terrain mobility. Experimental demonstrations of Axel on sloped and rocky terrains are presented

    Slide-Down Prevention for Wheeled Mobile Robots on Slopes

    Get PDF
    Wheeled mobile robots on inclined terrain can slide down due to loss of traction and gravity. This type of instability, which is different from tip-over, can provoke uncontrolled motion or get the vehicle stuck. This paper proposes slide-down prevention by real-time computation of a straightforward stability margin for a given ground-wheel friction coefficient. This margin is applied to the case study of Lazaro, a hybrid skid-steer mobile robot with caster-leg mechanism that allows tests with four or five wheel contact points. Experimental results for both ADAMS simulations and the actual vehicle demonstrate the effectiveness of the proposed approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Towards the Design and Evaluation of Robotic Legs of Quadruped Robots

    Get PDF
    Legged systems have potentials of better mobility than traditional wheeled and tracked vehicles on rough terrain. The reason for the superior mobility of legged systems has been studied for a long period and plenty of robots using legs for locomotion have been developed during recent few decades. However the built legged robots still exhibit insufficiency of expected locomotive ability comparing with their counterparts in nature with similar size. The reason may be complicated and systematic associated with several aspects of the development such as the design, key components, control & planning and/or test and evaluation. The goal of this thesis is to close the gap between legged robots research & development and practical application and deployment. The research presented in this thesis focuses on three aspects including morphological parameters of quadruped robots, optimal design for knee joint mechanism and the development of a novel test bench\u2014 Terrain Simulator Platform. The primary motivation and target for legged robots developing is to overcome the challenging terrain. However few legged robots take the feature of terrain into consideration when determining the morphological parameters, such as limb length and knee orientation for robots. In this thesis, the relationship between morphological parameters of quadruped robots and terrain features are studied by taking a ditch/gap as an example. The influence of diverse types of morphological parameters including limb length, limb mass, the center-of-mass position in limbs and knee configuration on the ditch crossing capability are presented. In order to realize extended motion range and desired torque profile, the knee joint of HyQ2max adopts a six-bar linkage mechanism as transmission. Owing to the complexity of closed-loop kinematic chain, the transmission ratio is difficult to design. In this thesis, I used a static equilibrium based approach to derive the transmission relationship and study the singularity conditions. Further desired torque profile of knee joint are realized by a multi-variable geometric parameters optimization. For the test and performance evaluation of robotic leg, I designed and constructed a novel test bench\u2014 Terrain Simulator Platform (TSP). The main function of the TSP is to provide sufficient test conditions for robotic leg by simulating various terrain features. Thus working status of robotic leg can be known before the construction of the whole robot. The core of the TSP is a 3-PRR planar parallel mechanism. In this thesis, the structure design and implementation, the kinematics including singularity, workspace etc, and dynamics of this 3-PRR mechanism are presented
    corecore