24,560 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot

    EXODUS: Integrating intelligent systems for launch operations support

    Get PDF
    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201
    • 

    corecore