12,816 research outputs found

    Biology of Applied Digital Ecosystems

    Full text link
    A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystems, including population dynamics, evolution, a complex dynamic environment, and spatial distributions for generating local interactions. The potential for exploiting these properties in artificial systems is then considered. We suggest that several key features of biological ecosystems have not been fully explored in existing digital ecosystems, and discuss how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, with measures originating from theoretical ecology, to confirm its likeness to a biological ecosystem. Including the responsiveness to requests for applications from the user base, as a measure of the 'ecological succession' (development).Comment: 9 pages, 4 figure, conferenc

    Business Process Configuration According to Data Dependency Specification

    Get PDF
    Configuration techniques have been used in several fields, such as the design of business process models. Sometimes these models depend on the data dependencies, being easier to describe what has to be done instead of how. Configuration models enable to use a declarative representation of business processes, deciding the most appropriate work-flow in each case. Unfortunately, data dependencies among the activities and how they can affect the correct execution of the process, has been overlooked in the declarative specifications and configurable systems found in the literature. In order to find the best process configuration for optimizing the execution time of processes according to data dependencies, we propose the use of Constraint Programming paradigm with the aim of obtaining an adaptable imperative model in function of the data dependencies of the activities described declarative.Ministerio de Ciencia y Tecnología TIN2015-63502-C3-2-RFondo Europeo de Desarrollo Regiona

    VIVACE: A framework for the systematic evaluation of variability support in process-aware information systems

    Get PDF
    Context: The increasing adoption of process-aware information systems (PAISs) such as workflow management systems, enterprise resource planning systems, or case management systems, together with the high variability in business processes (e.g., sales processes may vary depending on the respective products and countries), has resulted in large industrial process model repositories. To cope with this business process variability, the proper management of process variants along the entire process lifecycle becomes crucial. Objective: The goal of this paper is to develop a fundamental understand-ing of business process variability. In particular, the paper will provide a framework for assessing and comparing process variability approaches and the support they provide for the different phases of the business process life

    VIVACE: A framework for the systematic evaluation of variability support in process-aware information systems

    Full text link
    Context: The increasing adoption of process-aware information systems (PAISs) such as workflow management systems, enterprise resource planning systems, or case management systems, together with the high variability in business processes (e.g., sales processes may vary depending on the respective products and countries), has resulted in large industrial process model repositories. To cope with this business process variability, the proper management of process variants along the entire process lifecycle becomes crucial. Objective: The goal of this paper is to develop a fundamental understanding of business process variability. In particular, the paper will provide a framework for assessing and comparing process variability approaches and the support they provide for the different phases of the business process lifecycle (i.e., process analysis and design, configuration, enactment, diagnosis, and evolution). Method: We conducted a systematic literature review (SLR) in order to discover how process variability is supported by existing approaches. Results: The SLR resulted in 63 primary studies which were deeply analyzed. Based on this analysis, we derived the VIVACE framework. VIVACE allows assessing the expressiveness of a process modeling language regarding the explicit specification of process variability. Furthermore, the support provided by a process-aware information system to properly deal with process model variants can be assessed with VIVACE as well. Conclusions: VIVACE provides an empirically-grounded framework for process engineers that enables them to evaluate existing process variability approaches as well as to select that variability approach meeting their requirements best. Finally, it helps process engineers in implementing PAISs supporting process variability along the entire process lifecycle. (C) 2014 Elsevier B.V. All rights reserved.This work has been developed with the support of MICINN under the project EVERYWARE TIN2010-18011.Ayora Esteras, C.; Torres Bosch, MV.; Weber, B.; Reichert, M.; Pelechano Ferragud, V. (2015). VIVACE: A framework for the systematic evaluation of variability support in process-aware information systems. Information and Software Technology. 57:248-276. https://doi.org/10.1016/j.infsof.2014.05.009S2482765

    VIVACE: A Framework for the Systematic Evaluation of Variability Support in Process-Aware Information Systems

    Get PDF
    CONTEXT The increasing adoption of process-aware information systems (PAISs) such as workflow management systems, enterprise resource planning systems, or case management systems, together with the high variability in business processes (e.g., sales processes may vary depending on the respective products and countries), has resulted in large industrial process model repositories. To cope with this business process variability, the proper management of process variants along the entire process lifecycle becomes crucial. OBJECTIVE The goal of this paper is to develop a fundamental understanding of business process variability. In particular, the paper will provide a framework for assessing and comparing process variability approaches and the support they provide for the different phases of the business process lifecycle (i.e., process analysis and design, configuration, enactment, diagnosis, and evolution). METHOD We conducted a systematic literature review (SLR) in order to discover how process variability is supported by existing approaches. RESULTS The SLR resulted in 63 primary studies which were deeply analyzed. Based on this analysis, we derived the VIVACE framework. VIVACE allows assessing the expressiveness of a process modeling language regarding the explicit specification of process variability. Furthermore, the support provided by a process-aware information system to properly deal with process model variants can be assessed with VIVACE as well. CONCLUSIONS VIVACE provides an empirically-grounded framework for process engineers that enables them to evaluate existing process variability approaches as well as to select that variability approach meeting their requirements best. Finally, it helps process engineers in implementing PAISs supporting process variability along the entire process lifecycle

    Multi-perspective requirements engineering for networked business systems: a framework for pattern composition

    Get PDF
    How business and software analysts explore, document, and negotiate requirements for enterprise systems is critical to the benefits their organizations will eventually derive. In this paper, we present a framework for analysis and redesign of networked business systems. It is based on libraries of patterns which are derived from existing Internet businesses. The framework includes three perspectives: Economic value, Business processes, and Application communication, each of which applies a goal-oriented method to compose patterns. By means of consistency relationships between perspectives, we demonstrate the usefulness of the patterns as a light-weight approach to exploration of business ideas
    corecore