1,893 research outputs found

    The Federal Big Data Research and Development Strategic Plan

    Get PDF
    This document was developed through the contributions of the NITRD Big Data SSG members and staff. A special thanks and appreciation to the core team of editors, writers, and reviewers: Lida Beninson (NSF), Quincy Brown (NSF), Elizabeth Burrows (NSF), Dana Hunter (NSF), Craig Jolley (USAID), Meredith Lee (DHS), Nishal Mohan (NSF), Chloe Poston (NSF), Renata Rawlings-Goss (NSF), Carly Robinson (DOE Science), Alejandro Suarez (NSF), Martin Wiener (NSF), and Fen Zhao (NSF). A national Big Data1 innovation ecosystem is essential to enabling knowledge discovery from and confident action informed by the vast resource of new and diverse datasets that are rapidly becoming available in nearly every aspect of life. Big Data has the potential to radically improve the lives of all Americans. It is now possible to combine disparate, dynamic, and distributed datasets and enable everything from predicting the future behavior of complex systems to precise medical treatments, smart energy usage, and focused educational curricula. Government agency research and public-private partnerships, together with the education and training of future data scientists, will enable applications that directly benefit society and the economy of the Nation. To derive the greatest benefits from the many, rich sources of Big Data, the Administration announced a “Big Data Research and Development Initiative” on March 29, 2012.2 Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the Office of Science and Technology Policy, stated that the initiative “promises to transform our ability to use Big Data for scientific discovery, environmental and biomedical research, education, and national security.” The Federal Big Data Research and Development Strategic Plan (Plan) builds upon the promise and excitement of the myriad applications enabled by Big Data with the objective of guiding Federal agencies as they develop and expand their individual mission-driven programs and investments related to Big Data. The Plan is based on inputs from a series of Federal agency and public activities, and a shared vision: We envision a Big Data innovation ecosystem in which the ability to analyze, extract information from, and make decisions and discoveries based upon large, diverse, and real-time datasets enables new capabilities for Federal agencies and the Nation at large; accelerates the process of scientific discovery and innovation; leads to new fields of research and new areas of inquiry that would otherwise be impossible; educates the next generation of 21st century scientists and engineers; and promotes new economic growth. The Plan is built around seven strategies that represent key areas of importance for Big Data research and development (R&D). Priorities listed within each strategy highlight the intended outcomes that can be addressed by the missions and research funding of NITRD agencies. These include advancing human understanding in all branches of science, medicine, and security; ensuring the Nation’s continued leadership in research and development; and enhancing the Nation’s ability to address pressing societal and environmental issues facing the Nation and the world through research and development

    The Federal Big Data Research and Development Strategic Plan

    Get PDF
    This document was developed through the contributions of the NITRD Big Data SSG members and staff. A special thanks and appreciation to the core team of editors, writers, and reviewers: Lida Beninson (NSF), Quincy Brown (NSF), Elizabeth Burrows (NSF), Dana Hunter (NSF), Craig Jolley (USAID), Meredith Lee (DHS), Nishal Mohan (NSF), Chloe Poston (NSF), Renata Rawlings-Goss (NSF), Carly Robinson (DOE Science), Alejandro Suarez (NSF), Martin Wiener (NSF), and Fen Zhao (NSF). A national Big Data1 innovation ecosystem is essential to enabling knowledge discovery from and confident action informed by the vast resource of new and diverse datasets that are rapidly becoming available in nearly every aspect of life. Big Data has the potential to radically improve the lives of all Americans. It is now possible to combine disparate, dynamic, and distributed datasets and enable everything from predicting the future behavior of complex systems to precise medical treatments, smart energy usage, and focused educational curricula. Government agency research and public-private partnerships, together with the education and training of future data scientists, will enable applications that directly benefit society and the economy of the Nation. To derive the greatest benefits from the many, rich sources of Big Data, the Administration announced a “Big Data Research and Development Initiative” on March 29, 2012.2 Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the Office of Science and Technology Policy, stated that the initiative “promises to transform our ability to use Big Data for scientific discovery, environmental and biomedical research, education, and national security.” The Federal Big Data Research and Development Strategic Plan (Plan) builds upon the promise and excitement of the myriad applications enabled by Big Data with the objective of guiding Federal agencies as they develop and expand their individual mission-driven programs and investments related to Big Data. The Plan is based on inputs from a series of Federal agency and public activities, and a shared vision: We envision a Big Data innovation ecosystem in which the ability to analyze, extract information from, and make decisions and discoveries based upon large, diverse, and real-time datasets enables new capabilities for Federal agencies and the Nation at large; accelerates the process of scientific discovery and innovation; leads to new fields of research and new areas of inquiry that would otherwise be impossible; educates the next generation of 21st century scientists and engineers; and promotes new economic growth. The Plan is built around seven strategies that represent key areas of importance for Big Data research and development (R&D). Priorities listed within each strategy highlight the intended outcomes that can be addressed by the missions and research funding of NITRD agencies. These include advancing human understanding in all branches of science, medicine, and security; ensuring the Nation’s continued leadership in research and development; and enhancing the Nation’s ability to address pressing societal and environmental issues facing the Nation and the world through research and development

    Conversations on a probable future: interview with Beatrice Fazi

    Get PDF
    No description supplie

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security
    • …
    corecore