513,525 research outputs found

    Confidence sets for network structure

    Full text link
    Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given partition of network nodes, enabling us to assess estimates of 'residual' network structure, that is, structure that cannot be explained by known covariates and thus cannot be easily verified by manual inspection. We demonstrate the proposed methodology by analyzing student friendship networks from the National Longitudinal Survey of Adolescent Health that include race, gender, and school year as covariates. We employ a stochastic expectation-maximization algorithm to fit a logistic regression model that includes these explanatory variables as well as a latent stochastic blockmodel component and additional node-specific effects. Although maximum-likelihood estimates do not appear consistent in this context, we are able to evaluate confidence sets as a function of different blockmodel partitions, which enables us to qualitatively assess the significance of estimated residual network structure relative to a baseline, which models covariates but lacks block structure.Comment: 17 pages, 3 figures, 3 table

    Exploring Geometry of Blind Spots in Vision Models

    Full text link
    Despite the remarkable success of deep neural networks in a myriad of settings, several works have demonstrated their overwhelming sensitivity to near-imperceptible perturbations, known as adversarial attacks. On the other hand, prior works have also observed that deep networks can be under-sensitive, wherein large-magnitude perturbations in input space do not induce appreciable changes to network activations. In this work, we study in detail the phenomenon of under-sensitivity in vision models such as CNNs and Transformers, and present techniques to study the geometry and extent of "equi-confidence" level sets of such networks. We propose a Level Set Traversal algorithm that iteratively explores regions of high confidence with respect to the input space using orthogonal components of the local gradients. Given a source image, we use this algorithm to identify inputs that lie in the same equi-confidence level set as the source image despite being perceptually similar to arbitrary images from other classes. We further observe that the source image is linearly connected by a high-confidence path to these inputs, uncovering a star-like structure for level sets of deep networks. Furthermore, we attempt to identify and estimate the extent of these connected higher-dimensional regions over which the model maintains a high degree of confidence. The code for this project is publicly available at https://github.com/SriramB-98/blindspots-neurips-subComment: 25 pages, 20 figures, Accepted at NeurIPS 2023 (spotlight

    Rule Extraction and Insertion to Improve the Performance of a Dynamic Cell Structure Neural Network

    Get PDF
    Artificial Neural Networks are extremely useful machine learning tools. They are used for many purposes, such as prediction, classification, pattern recognition, etc. Although neural networks have been used for decades, they are still often not completely understood or trusted, especially in safety and mission critical situations. Typically, neural networks are trained on data sets that are representative of what needs to be learned. Sometimes training sets are constructed in order to train the neural network in a certain way, in order to embed appropriate knowledge. The purpose of this research is to determine if there is another method that can be used to embed specific knowledge in a neural network before training and if this improves the performance of a neural network. This research develops and tests a new method of embedding pre-knowledge into the Dynamic Cell Structure (DCS) neural network. The DCS is a type of self-organizing map neural network that has been used for many purposes, including classification. In the research presented here, the method used for embedding pre-knowledge into the neural network is to start by converting the knowledge to a set of IF/THEN rules, that can be easily understood and/or validated by a human expert. Once the rules are constructed and validated, then they are converted to a beginning neural network structure. This allows pre-knowledge to be embedded before training the neural network. This conversion and embedding process is called Rule Insertion. In order to determine whether this process improves performance, the neural network was trained with and without pre-knowledge embedded. After the training, the neural network structure was again converted to rules, Rule Extraction, and then the neural network accuracy and the rule accuracy were computed. Also, the agreement between the neural network and the extracted rules was computed. The findings of this research show that using Rule Insertion to embed pre-knowledge into a DCS neural network can increase the accuracy of the neural network. An expert can create the rules to be embedded and can also examine and validate the rules extracted to give more confidence in what the neural network has learned during training. The extracted rules are also a refinement of the inserted rules, meaning the neural network was able to improve upon the expert knowledge based on the data presented

    ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis

    Get PDF
    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design

    Social Network Intelligence Analysis to Combat Street Gang Violence

    Full text link
    In this paper we introduce the Organization, Relationship, and Contact Analyzer (ORCA) that is designed to aide intelligence analysis for law enforcement operations against violent street gangs. ORCA is designed to address several police analytical needs concerning street gangs using new techniques in social network analysis. Specifically, it can determine "degree of membership" for individuals who do not admit to membership in a street gang, quickly identify sets of influential individuals (under the tipping model), and identify criminal ecosystems by decomposing gangs into sub-groups. We describe this software and the design decisions considered in building an intelligence analysis tool created specifically for countering violent street gangs as well as provide results based on conducting analysis on real-world police data provided by a major American metropolitan police department who is partnering with us and currently deploying this system for real-world use

    Large-scale inference and graph theoretical analysis of gene-regulatory networks in B. stubtilis

    Full text link
    We present the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B. subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. By employing a computational, linear correlative procedure to generate these networks, and by analyzing the networks from a graph theoretical perspective, we are able to verify the biological viability of our inferred networks, and we demonstrate that our networks' graph theoretical properties are remarkably similar to those of other biological systems. In addition, by comparing our inferred networks to those of a previous, noisier implementation of the linear inference process [17], we are able to identify trends in graph theoretical behavior that occur both in our networks as well as in their perturbed counterparts. These commonalities in behavior at multiple levels of complexity allow us to ascertain the level of complexity to which our process is robust to noise.Comment: 22 pages, 4 figures, accepted for publication in Physica A (2006
    • …
    corecore