142 research outputs found

    AN EFFICIENT AND ROBUST MULTI-STREAM FRAMEWORK FOR END-TO-END SPEECH RECOGNITION

    Get PDF
    In voice-enabled domestic or meeting environments, distributed microphone arrays aim to process distant-speech interaction into text with high accuracy. However, with dynamic corruption of noises and reverberations or human movement present, there is no guarantee that any microphone array (stream) is constantly informative. In these cases, an appropriate strategy to dynamically fuse streams is necessary. The multi-stream paradigm in Automatic Speech Recognition (ASR) considers scenarios where parallel streams carry diverse or complementary task-related knowledge. Such streams could be defined as microphone arrays, frequency bands, various modalities or etc. Hence, a robust stream fusion is crucial to emphasize on more informative streams than corrupted ones, especially under unseen conditions. This thesis focuses on improving the performance and robustness of speech recognition in multi-stream scenarios. With increasing use of Deep Neural Networks (DNNs) in ASR, End-to-End (E2E) approaches, which directly transcribe human speech into text, have received greater attention. In this thesis, a multi-stream framework is presented based on the joint Connectionist Temporal Classification/ATTention (CTC/ATT) E2E model, where parallel streams are represented by separate encoders. On top of regular attention networks, a secondary stream-fusion network is to steer the decoder toward the most informative streams. The MEM-Array model aims at improving the far-field ASR robustness using microphone arrays which are activated by separate encoders. With an increasing number of streams (encoders) requiring substantial memory and massive amounts of parallel data, a practical two-stage training strategy is designated to address these issues. Furthermore, a two-stage augmentation scheme is present to improve robustness of the multi-stream model. In MEM-Res, two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complementary information from the same acoustics. Compared with the best single-stream performance, both models have achieved substantial improvement, outperforming alternative fusion strategies. While the proposed framework optimizes information in multi-stream scenarios, this thesis also studies the Performance Monitoring (PM) measures to predict if recognition results of an E2E model are reliable without growth-truth knowledge. Four PM techniques are investigated, suggesting that PM measures on attention distributions and decoder posteriors are well-correlated with true performances

    Dealing with linguistic mismatches for automatic speech recognition

    Get PDF
    Recent breakthroughs in automatic speech recognition (ASR) have resulted in a word error rate (WER) on par with human transcribers on the English Switchboard benchmark. However, dealing with linguistic mismatches between the training and testing data is still a significant challenge that remains unsolved. Under the monolingual environment, it is well-known that the performance of ASR systems degrades significantly when presented with the speech from speakers with different accents, dialects, and speaking styles than those encountered during system training. Under the multi-lingual environment, ASR systems trained on a source language achieve even worse performance when tested on another target language because of mismatches in terms of the number of phonemes, lexical ambiguity, and power of phonotactic constraints provided by phone-level n-grams. In order to address the issues of linguistic mismatches for current ASR systems, my dissertation investigates both knowledge-gnostic and knowledge-agnostic solutions. In the first part, classic theories relevant to acoustics and articulatory phonetics that present capability of being transferred across a dialect continuum from local dialects to another standardized language are re-visited. Experiments demonstrate the potentials that acoustic correlates in the vicinity of landmarks could help to build a bridge for dealing with mismatches across difference local or global varieties in a dialect continuum. In the second part, we design an end-to-end acoustic modeling approach based on connectionist temporal classification loss and propose to link the training of acoustics and accent altogether in a manner similar to the learning process in human speech perception. This joint model not only performed well on ASR with multiple accents but also boosted accuracies of accent identification task in comparison to separately-trained models

    The benefits of acoustic perceptual information for speech processing systems

    Get PDF
    The frame-synchronized framework has dominated many speech processing systems, such as ASR and AED targeting human speech activities. These systems have little consideration for the science behind speech and treat the task as a simple statistical classification. The framework also assumes each feature vector to be equally important to the task. However, through some preliminary experiments, this study has found evidence that some concepts defined in speech perception theories such as auditory roughness and acoustic landmarks can act as heuristics to these systems and benefit them in multiple ways. Findings of acoustic landmarks hint that the idea of treating each frame equally might not be optimal. In some cases, landmark information can improve system accuracy through highlighting the more significant frames, or improve the acoustic model accuracy by training through MTL. Further investigation into the topic found experimental evidence suggesting that acoustic landmark information can also benefit end-to-end acoustic models trained through CTC loss. With the help of acoustic landmarks, CTC models can converge with less training data and achieve lower error rate. For the first time, positive results were collected on a mid-size ASR corpus (WSJ) for acoustic landmarks. The results indicate that audio perception information can benefit a broad range of audio processing systems

    Deep Learning for Distant Speech Recognition

    Full text link
    Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. We then investigate on approaches for better exploiting speech contexts, proposing some original methodologies for both feed-forward and recurrent neural networks. Lastly, inspired by the idea that cooperation across different DNNs could be the key for counteracting the harmful effects of noise and reverberation, we propose a novel deep learning paradigm called network of deep neural networks. The analysis of the original concepts were based on extensive experimental validations conducted on both real and simulated data, considering different corpora, microphone configurations, environments, noisy conditions, and ASR tasks.Comment: PhD Thesis Unitn, 201
    • …
    corecore