6,509 research outputs found

    Bootstrap confidence intervals for predicted rainfall quantiles

    Get PDF
    Rainfall probability charts have been used to quantify the effect of the Southern Oscillation Index (SOI) on rainfall for many years. To better understand the effect of the SOI phases, we discuss forming confidence intervals on the predicted rainfall quantiles using percentile bootstrap methods

    Variance reduction techniques for estimating quantiles and value-at-risk

    Get PDF
    Quantiles, as a performance measure, arise in many practical contexts. In finance, quantiles are called values-at-risk (VARs), and they are widely used in the financial industry to measure portfolio risk. When the cumulative distribution function is unknown, the quantile can not be computed exactly and must be estimated. In addition to computing a point estimate for the quantile, it is important to also provide a confidence interval for the quantile as a way of indicating the error in the estimate. A problem with crude Monte Carlo is that the resulting confidence interval may be large, which is often the case when estimating extreme quantiles. This motivates applying variance-reduction techniques (VRTs) to try to obtain more efficient quantile estimators. Much of the previous work on estimating quantiles using VRTs did not provide methods for constructing asymptotically valid confidence intervals. This research developed asymptotically valid confidence intervals for quantiles that are estimated using simulation with VRTs. The VRTs considered were importance sampling (IS), stratified sampling (SS), antithetic variates (AV), and control variates (CV). The method of proving the asymptotic validity was to first show that the quantile estimators obtained with VRTs satisfies a Bahadur-Ghosh representation. Then this was employed to prove central limit theorems (CLTs) and to obtain consistent estimators of the variances in the CLTs, which were used to construct confidence intervals. After the theoretical framework was established, explicit algorithms were presented to construct confidence intervals for quantiles when applying IS+SS, AV and CV. An empirical study of the finite-sample behavior of the confidence intervals was also performed on two stochastic models: a standard normal/bivariate normal distribution and a stochastic activity network (SAN)

    Change-Point Testing and Estimation for Risk Measures in Time Series

    Full text link
    We investigate methods of change-point testing and confidence interval construction for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. A key aspect of our work is the ability to detect general multiple structural changes in the tails of time series marginal distributions. Unlike extant approaches for detecting tail structural changes using quantities such as tail index, our approach does not require parametric modeling of the tail and detects more general changes in the tail. Additionally, our methods are based on the recently introduced self-normalization technique for time series, allowing for statistical analysis without the issues of consistent standard error estimation. The theoretical foundation for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 returns and US 30-Year Treasury bonds illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series during times of financial crisis

    Symmetry, regression design, and sampling distributions

    Get PDF
    When values of regressors are symmetrically disposed, many M-estimators in a wide class of models have a reflection property, namely, that as the signs of the coefficients on regressors are reversed, their estimators' sampling distribution is reflected about the origin. When the coefficients are zero, sign reversal can have no effect. So in this case, the sampling distribution of regression coefficient estimators is symmetric about zero, the estimators are median unbiased and, when moments exist, the estimators are exactly uncorrelated with estimators of other parameters. The result is unusual in that it does not require response variates to have symmetric conditional distributions. It demonstrates the potential importance of covariate design in determining the distributions of estimators, and it is useful in designing and interpreting Monte Carlo experiments. The result is illustrated by a Monte Carlo experiment in which maximum likelihood and symmetrically censored least-squares estimators are calculated for small samples from a censored normal linear regression, Tobit, model. © 1994, Cambridge University Press. All rights reserved

    A Bayesian Variable Selection Method with Applications to Spatial Data

    Get PDF
    This thesis first describes the general idea behind Bayes Inference, various sampling methods based on Bayes theorem and many examples. Then a Bayes approach to model selection, called Stochastic Search Variable Selection (SSVS) is discussed. It was originally proposed by George and McCulloch (1993). In a normal regression model where the number of covariates is large, only a small subset tend to be significant most of the times. This Bayes procedure specifies a mixture prior for each of the unknown regression coefficient, the mixture prior was originally proposed by Geweke (1996). This mixture prior will be updated as data becomes available to generate a posterior distribution that assigns higher posterior probabilities to coefficients that are significant in explaining the response. Spatial modeling method is described in this thesis. Prior distribution for all unknown parameters and latent variables are specified. Simulated studies under different models have been implemented to test the efficiency of SSVS. A real dataset taken by choosing a small region from the Cape Floristic Region in South Africa is used to analyze the plants distribution in that region. The original multi-cateogory response is transformed into a presence and absence (binary) response for simpler analysis. First, SSVS is used on this dataset to select the subset of significant covariates. Then a spatial model is fitted using the chosen covariates and, post-estimation, predictive map of posterior probabilities of presence and absence are obtained for the study region. Posterior estimates for the true regression coefficients are also provided along with map for spatial random effects
    corecore