40,276 research outputs found

    An Emulator for the Lyman-alpha Forest

    Full text link
    We present methods for interpolating between the 1-D flux power spectrum of the Lyman-α\alpha forest, as output by cosmological hydrodynamic simulations. Interpolation is necessary for cosmological parameter estimation due to the limited number of simulations possible. We construct an emulator for the Lyman-α\alpha forest flux power spectrum from 2121 small simulations using Latin hypercube sampling and Gaussian process interpolation. We show that this emulator has a typical accuracy of 1.5% and a worst-case accuracy of 4%, which compares well to the current statistical error of 3 - 5% at z<3z < 3 from BOSS DR9. We compare to the previous state of the art, quadratic polynomial interpolation. The Latin hypercube samples the entire volume of parameter space, while quadratic polynomial emulation samples only lower-dimensional subspaces. The Gaussian process provides an estimate of the emulation error and we show using test simulations that this estimate is reasonable. We construct a likelihood function and use it to show that the posterior constraints generated using the emulator are unbiased. We show that our Gaussian process emulator has lower emulation error than quadratic polynomial interpolation and thus produces tighter posterior confidence intervals, which will be essential for future Lyman-α\alpha surveys such as DESI.Comment: 28 pages, 10 figures, accepted to JCAP with minor change

    Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science

    Full text link
    As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.Comment: 8 pages, 5 figures, preprint to appear in GECCO 2016, edits not yet made from reviewer comment

    Mondrian Forests for Large-Scale Regression when Uncertainty Matters

    Full text link
    Many real-world regression problems demand a measure of the uncertainty associated with each prediction. Standard decision forests deliver efficient state-of-the-art predictive performance, but high-quality uncertainty estimates are lacking. Gaussian processes (GPs) deliver uncertainty estimates, but scaling GPs to large-scale data sets comes at the cost of approximating the uncertainty estimates. We extend Mondrian forests, first proposed by Lakshminarayanan et al. (2014) for classification problems, to the large-scale non-parametric regression setting. Using a novel hierarchical Gaussian prior that dovetails with the Mondrian forest framework, we obtain principled uncertainty estimates, while still retaining the computational advantages of decision forests. Through a combination of illustrative examples, real-world large-scale datasets, and Bayesian optimization benchmarks, we demonstrate that Mondrian forests outperform approximate GPs on large-scale regression tasks and deliver better-calibrated uncertainty assessments than decision-forest-based methods.Comment: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain. JMLR: W&CP volume 5
    • …
    corecore