48,276 research outputs found

    Enriching Knowledge Bases with Counting Quantifiers

    Full text link
    Information extraction traditionally focuses on extracting relations between identifiable entities, such as . Yet, texts often also contain Counting information, stating that a subject is in a specific relation with a number of objects, without mentioning the objects themselves, for example, "California is divided into 58 counties". Such counting quantifiers can help in a variety of tasks such as query answering or knowledge base curation, but are neglected by prior work. This paper develops the first full-fledged system for extracting counting information from text, called CINEX. We employ distant supervision using fact counts from a knowledge base as training seeds, and develop novel techniques for dealing with several challenges: (i) non-maximal training seeds due to the incompleteness of knowledge bases, (ii) sparse and skewed observations in text sources, and (iii) high diversity of linguistic patterns. Experiments with five human-evaluated relations show that CINEX can achieve 60% average precision for extracting counting information. In a large-scale experiment, we demonstrate the potential for knowledge base enrichment by applying CINEX to 2,474 frequent relations in Wikidata. CINEX can assert the existence of 2.5M facts for 110 distinct relations, which is 28% more than the existing Wikidata facts for these relations.Comment: 16 pages, The 17th International Semantic Web Conference (ISWC 2018

    Emergence of spike correlations in periodically forced excitable systems

    Get PDF
    In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate relative temporal order in spike sequences induced by a subthreshold periodic input, in the presence of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model, and to investigate the output sequence of inter-spike intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal order, in the form of preferred ordinal patterns which depend on both, the strength of the noise and the period of the input signal. We also demonstrate a resonance-like behavior, as certain periods and noise levels enhance temporal ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in spike sequences the information about weak periodic stimuli

    Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies of Fuzzy Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed methods
    • …
    corecore