33,685 research outputs found

    Interactive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning

    Get PDF
    Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes. To address these problems, we propose a novel deep learning-based framework for interactive segmentation by incorporating CNNs into a bounding box and scribble-based segmentation pipeline. We propose image-specific fine-tuning to make a CNN model adaptive to a specific test image, which can be either unsupervised (without additional user interactions) or supervised (with additional scribbles). We also propose a weighted loss function considering network and interaction-based uncertainty for the fine-tuning. We applied this framework to two applications: 2D segmentation of multiple organs from fetal MR slices, where only two types of these organs were annotated for training; and 3D segmentation of brain tumor core (excluding edema) and whole brain tumor (including edema) from different MR sequences, where only tumor cores in one MR sequence were annotated for training. Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.Comment: 11 pages, 11 figure

    SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation

    Full text link
    We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. To the best of our knowledge, SGPN is the first framework to learn 3D instance-aware semantic segmentation on point clouds. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance

    Semantic Object Parsing with Local-Global Long Short-Term Memory

    Full text link
    Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods often leverage the contextual information through post-processing predicted confidence maps. In this work, we propose a novel deep Local-Global Long Short-Term Memory (LG-LSTM) architecture to seamlessly incorporate short-distance and long-distance spatial dependencies into the feature learning over all pixel positions. In each LG-LSTM layer, local guidance from neighboring positions and global guidance from the whole image are imposed on each position to better exploit complex local and global contextual information. Individual LSTMs for distinct spatial dimensions are also utilized to intrinsically capture various spatial layouts of semantic parts in the images, yielding distinct hidden and memory cells of each position for each dimension. In our parsing approach, several LG-LSTM layers are stacked and appended to the intermediate convolutional layers to directly enhance visual features, allowing network parameters to be learned in an end-to-end way. The long chains of sequential computation by stacked LG-LSTM layers also enable each pixel to sense a much larger region for inference benefiting from the memorization of previous dependencies in all positions along all dimensions. Comprehensive evaluations on three public datasets well demonstrate the significant superiority of our LG-LSTM over other state-of-the-art methods.Comment: 10 page
    • …
    corecore