20,876 research outputs found

    A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356

    Full text link
    We report observations with the Chandra X-ray Observatory of the single, cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray observations of single white dwarfs, we also re-analyzed archival ROSAT data for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ 339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD 358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting the most restrictive upper limit to the X-ray luminosity from any cool white dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV thermal-bremsstrahlung spectrum. The corresponding limit to the electron density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data confirmed the non-detections reported by the original investigators. We discuss the implications of our and prior observations on models for coronal emission from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent constraints imposed by cyclotron radiation. In addition, we describe (in an appendix) a statistical methodology for detecting a source and for constraining the strength of a source, which applies even when the number of source or background events is small.Comment: 27 pages, 4 figures, submitted to the Astrophysical Journa

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 km^3 of Sea Water

    Full text link
    An underwater acoustic sensor array spanning ~1500 km^3 is used to search for cosmic-ray neutrinos of ultra-high energies (UHE, E > 10^18 eV). Approximately 328 million triggers accumulated over an integrated 130 days of data taking are analysed. The sensitivity of the experiment is determined from a Monte Carlo simulation of the array using recorded noise conditions and expected waveforms. Two events are found to have properties compatible with showers in the energy range 10^24 to 5x10^24 eV and 10^22 to 5x10^22 eV. Since the understanding of impulsive backgrounds is limited, a flux upper limit is set providing the most sensitive limit on UHE neutrinos using the acoustic technique.Comment: Submitted to PRD. 8 pages, 12 figure
    • …
    corecore