40,691 research outputs found

    Pre and Post-hoc Diagnosis and Interpretation of Malignancy from Breast DCE-MRI

    Full text link
    We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.Comment: Submitted to Medical Image Analysi

    Can high-frequency ultrasound predict metastatic lymph nodes in patients with invasive breast cancer?

    Get PDF
    Aim To determine whether high-frequency ultrasound can predict the presence of metastatic axillary lymph nodes, with a high specificity and positive predictive value, in patients with invasive breast cancer. The clinical aim is to identify patients with axillary disease requiring surgery who would not normally, on clinical grounds, have an axillary dissection, so potentially improving outcome and survival rates. Materials and methods The ipsilateral and contralateral axillae of 42 consecutive patients with invasive breast cancer were scanned prior to treatment using a B-mode frequency of 13 MHz and a Power Doppler frequency of 7 MHz. The presence or absence of an echogenic centre for each lymph node detected was recorded, and measurements were also taken to determine the L/S ratio and the widest and narrowest part of the cortex. Power Doppler was also used to determine vascularity. The contralateral axilla was used as a control for each patient. Results In this study of patients with invasive breast cancer, ipsilateral lymph nodes with a cortical bulge ≥3 mm and/or at least two lymph nodes with absent echogenic centres indicated the presence of metastatic axillary lymph nodes (10 patients). The sensitivity and specificity were 52.6% and 100%, respectively, positive and negative predictive values were 100% and 71.9%, respectively, the P value was 0.001 and the Kappa score was 0.55.\ud Conclusion This would indicate that high-frequency ultrasound can be used to accurately predict metastatic lymph nodes in a proportion of patients with invasive breast cancer, which may alter patient management

    Mammographic breast density in infertile and parous women

    Get PDF
    BACKGROUND: Mammographic breast density is a useful marker for breast cancer risk, as breast density is considered one of the strongest breast cancer risk factors. The study objective was to evaluate and compare mammographic breast density in infertile and parous women, as infertility may be associated with high breast density and cancer occurrence. METHODS: This study evaluated mammographic breast density using two different systems, BIRADS and Boyd. A selected patient population of 151 women with primary infertility (case group) was compared to 154 parous women who had at least one previous pregnancy (control group). Both groups were premenopausal women aged ≥ 35. RESULTS: Evaluation of mammographic features showed that 66.9% of case group patients and 53.9% of control group patients were classified BIRADS-3/BIRADS-4; p < 0.05. Adjusted Odds ratio for the case group in the categories BIRADS-3/BIRADS-4 was 1.78 (95% CI: 1.10-2.89). Using the Boyd classification system, 53.6% of case group patients and 31.8% of control group patients were classified E/F; p < 0.05. Adjusted Odds ratio for case group patients in Boyd categories E/F was 2.05 (95 % CI: 1.07-3.93). CONCLUSIONS: Both systems yielded a higher percentage of increased breast density in the case group. Boyd and BIRADS classification systems indicate to what extend breast cancer lesions may be missed on mammography due to masking by dense tissue. Therefore, patients with a high BIRADS or Boyd score should undergo further investigation

    Model Agnostic Saliency for Weakly Supervised Lesion Detection from Breast DCE-MRI

    Full text link
    There is a heated debate on how to interpret the decisions provided by deep learning models (DLM), where the main approaches rely on the visualization of salient regions to interpret the DLM classification process. However, these approaches generally fail to satisfy three conditions for the problem of lesion detection from medical images: 1) for images with lesions, all salient regions should represent lesions, 2) for images containing no lesions, no salient region should be produced,and 3) lesions are generally small with relatively smooth borders. We propose a new model-agnostic paradigm to interpret DLM classification decisions supported by a novel definition of saliency that incorporates the conditions above. Our model-agnostic 1-class saliency detector (MASD) is tested on weakly supervised breast lesion detection from DCE-MRI, achieving state-of-the-art detection accuracy when compared to current visualization methods
    • …
    corecore