6,088 research outputs found

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Biological and microbial fuel cells

    Get PDF
    Biological fuel cells have attracted increasing interest in recent years because of their applications in environmental treatment, energy recovery, and small-scale power sources. Biological fuel cells are capable of producing electricity in the same way as a chemical fuel cell: there is a constant supply of fuel into the anode and a constant supply of oxidant into the cathode; however, typically the fuel is a hydrocarbon compound present in the wastewater, for example. Microbial fuel cells (MFCs) are also a promising technology for efficient wastewater treatment and generating energy as direct electricity for onsite remote application. MFCs are obtained when catalyst layer used into classical fuel cells (polymer electrolyte fuel cell) is replaced with electrogenic bacteria. A particular case of biological fuel cell is represented by enzyme-based fuel cells, when the catalyst layer is obtained by immobilization of enzyme on the electrode surface. These cells are of particular interest in biomedical research and health care and in environmental monitoring and are used as the power source for portable electronic devices. The technology developed for fabrication of enzyme electrodes is described. Different enzyme immobilization methods using layered structures with self-assembled monolayers and entrapment of enzymes in polymer matrixes are reviewed. The performances of enzymatic biofuel cells are summarized and approaches on further development to overcome current challenges are discussed. This innovative technology will have a major impact and benefit to medical science and clinical research, health care management, and energy production from renewable sources. Applications and advantages of using MFCs for wastewater treatment are described, including organic matter removal efficiency and electricity generation. Factors affecting the performance of MFC are summarized and further development needs are accentuated

    Advances in oral transmucosal drug delivery

    Get PDF
    Original article can be found at : http://sciencedirect.com/ Copyright ElsevierThe successful delivery of drugs across the oral mucosa represents a continuing challenge, as well as a great opportunity. Oral transmucosal delivery, especially buccal and sublingual delivery, has progressed far beyond the use of traditional dosage forms with novel approaches emerging continuously. This review highlights the physiological challenges as well as the advances and opportunities for buccal/sublingual drug delivery. Particular attention is given to new approaches which can extend dosage form retention time or can be engineered to deliver complex molecules such as proteins and peptides. The review will also discuss the physiology and local environment of the oral cavity in vivo and how this relates to the performance of transmucosal delivery systems.Peer reviewe

    Physical and chemical sensing applications of polypyrrole-coated foams

    Get PDF
    We live in a world of information, and emerging technologies, which compel us to look for new ways to collect, process, and distribute information. Today we are faced with an information overload problem as users struggle to locate the right information in the right way at the right time. In my view this is an “overload” of trivial information coupled with a gap in access to important information. Digitization of information and communications has seen the rise and rise of computers to a now ubiquitous position in our society. However, the problem remains as to how to merge the digital world with sensing, and respond to changes in the real world. Ubiquitous information systems are needed that will automatically sense and importantly, respond to changes in their environment and usage in order to deliver a more intelligent, proactive and personalized information service. These systems may be wearable, enabling them to disappear into our personal space, enhancing rather than burdening our daily activities. Conventional sensors are generally unsuitable for wearable body monitoring devices either due to their physical structure or their functional requirements. This thesis examines this area of wearable sensors, detailing the development and characterisation of novel sensing materials and outlines their performance in various on-body monitoring applications

    Developments in nanoparticles for use in biosensors to assess food safety and quality

    Get PDF
    The following will provide an overview on how advances in nanoparticle technology have contributed towards developing biosensors to screen for safety and quality markers associated with foods. The novel properties of nanoparticles will be described and how such characteristics have been exploited in sensor design will be provided. All the biosensor formats were initially developed for the health care sector to meet the demand for point-of-care diagnostics. As a consequence, research has been directed towards miniaturization thereby reducing the sample volume to nanolitres. However, the needs of the food sector are very different which may ultimately limit commercial application of nanoparticle based nanosensors. © 2014 Elsevier Ltd

    All-organic semiconductors for electrochemical biosensors : an overview of recent progress in material design

    Get PDF
    Organic semiconductors remain of major interest in the field of bioelectrochemistry for their versatility in chemical and electrochemical behavior. These materials have been tailored using organic synthesis for use in cell stimulation, sustainable energy production, and in biosensors. Recent progress in the field of fully organic semiconductor biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring of these semiconductors for their intended application. Biosensors ultimately function on the basis of a physical, optical or electrochemical change which occurs in the active material when it encounters the target analyte. Electrochemical biosensors are becoming increasingly popular among organic semiconductor biosensors, owing to their good detection performances, and simple operation. The analyte either interacts directly with the semiconductor material in a redox process or undergoes a redox process with a moiety such as an enzyme attached to the semiconductor material. The electrochemical signal is then transduced through the semiconductor material. The most recent examples of organic semiconductor biosensors are discussed here with reference to the material design of polymers with semiconducting backbones, specifically conjugated polymers, and polymer semiconducting dyes. We conclude that direct interaction between the analyte and the semiconducting material is generally more sensitive and cost effective, despite being currently limited by the need to identify, and synthesize selective sensing functionalities. It is also worth noting the potential roles of highly-sensitive, organic transistor devices and small molecule semiconductors, such as the photochromic and redox active molecule spiropyran, as polymer pendant groups in future biosensor designs

    DoR Communicator - February 2014

    Get PDF
    https://digitalcommons.fiu.edu/research_newsletter/1005/thumbnail.jp
    corecore