3 research outputs found

    Investigations on hybrid organic-inorganic perovskites for high performance solar cells

    Get PDF
    Undoubtedly, perovskite solar cells have become a key player in 3rd generation photovoltaics over the last few years. Although it is only in 2012 that the first solid state perovskite solar cell was reported, power conversion efficiencies have increased so rapidly that PSCs are now serious contenders to the well-established and marketed thin-film and wafer technologies. Over the timespan on this work, over 3000 published articles in peer-review journals have been published. The work that I report in this thesis is merely a small contribution to the gigantic amount of data, models and theories that have been made over the last 4 years. I hope that my modest contribution will be of value to the scientific community. Over the course of this work, I attempted not to focus my attention on a single issue that relates to perovskite photovoltaics, but to approach it from different perspectives. As a result, a wide array of subjects have been treated. Starting with the fabrication of perovskite solar cells, an innovative way to deposit thin film of perovskite from solution is reported, using a two-step deposition technique. Using this approach, the power conversion efficiency of perovskite solar cells has been increased from 12.3% to over 17% in less than a year. Subsequently, I looked into the possible compositional variations of the perovskite layer. This study showed that the cation methylammonium and formamidinium can be used inter- changeably using the deposition technique that we have reported on earlier. We showed that a mixture of the two cations leads to a stabilization of the tetragonal perovskite phase and shrinks the optical band gap of the photoabsorber, allowing more photons to be absorbed and converted into electrons. Following this work, I studied some of the reactivity properties of the phase pure organic inorganic CH3NH3PbX3(X=Cl,Br,I). Notably, it could be shown that the halide component can be easily exchanged by another one from a simple solution based anion exchange reaction. Later, the power conversion characteristics of perovskite solar cells were investigated. By developing a electronic circuit allowing versatile power point tracking of the solar cells, a new algorithm that deals with the issues specifically related to perovskite solar cells is reported. i A major topic of my work was the study of the frequency resolved dynamics that results for the generation carriers by light. Using a novel way to measure the intensity modulated spectral response of perovskite solar cells, I was able to identify some of the key limiting factors that cap the power conversion efficiency of the devices. A numerical model that answers to the laws of carrier dynamics was assembled and used as a tool to better understand perovskite solar cells. Finally, I reported on a way to deal with the end of life of perovskite solar cells. Some of the relevant regulatory framework in the European Union that deals with the recycling of solar panels are highlighted. Using the concept of "upcycling", a way to recycle the valuable components of the solar cell in an efficient way was outlined

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore