1,518 research outputs found

    Efficiently Controllable Graphs

    Get PDF
    We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that when a quantum network is described by such a graph, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficently controllable, and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems/qubits

    Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge

    Get PDF
    We define the {\it rest-frame instant form} of tetrad gravity restricted to Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of gauge transformations generated by the 14 first class constraints of the theory, we define and solve the multitemporal equations associated with the rotation and space diffeomorphism constraints, finding how the cotriads and their momenta depend on the corresponding gauge variables. This allows to find quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal gauges and to find the Dirac observables for superspace in these gauges. The construction of the explicit form of the transformation and of the solution of the rotation and supermomentum constraints is reduced to solve a system of elliptic linear and quasi-linear partial differential equations. We then show that the superhamiltonian constraint becomes the Lichnerowicz equation for the conformal factor of the 3-metric and that the last gauge variable is the momentum conjugated to the conformal factor. The gauge transformations generated by the superhamiltonian constraint perform the transitions among the allowed foliations of spacetime, so that the theory is independent from its 3+1 splittings. In the special 3-orthogonal gauge defined by the vanishing of the conformal factor momentum we determine the final Dirac observables for the gravitational field even if we are not able to solve the Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted to this completely fixed gauge.Comment: RevTeX file, 141 page

    Efficient Algorithms for Optimal Control of Quantum Dynamics: The "Krotov'' Method unencumbered

    Full text link
    Efficient algorithms for the discovery of optimal control designs for coherent control of quantum processes are of fundamental importance. One important class of algorithms are sequential update algorithms generally attributed to Krotov. Although widely and often successfully used, the associated theory is often involved and leaves many crucial questions unanswered, from the monotonicity and convergence of the algorithm to discretization effects, leading to the introduction of ad-hoc penalty terms and suboptimal update schemes detrimental to the performance of the algorithm. We present a general framework for sequential update algorithms including specific prescriptions for efficient update rules with inexpensive dynamic search length control, taking into account discretization effects and eliminating the need for ad-hoc penalty terms. The latter, while necessary to regularize the problem in the limit of infinite time resolution, i.e., the continuum limit, are shown to be undesirable and unnecessary in the practically relevant case of finite time resolution. Numerical examples show that the ideas underlying many of these results extend even beyond what can be rigorously proved.Comment: 19 pages, many figure

    Optimal thermodynamic control in open quantum systems

    Get PDF
    We apply advanced methods of control theory to open quantum systems and we determine finite-time processes which are optimal with respect to thermodynamic performances. General properties and necessary conditions characterizing optimal drivings are derived, obtaining bang-bang type solutions corresponding to control strategies switching between adiabatic and isothermal transformations. A direct application of these results is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally we apply our general approach to the specific case of a two level system, which can be put in contact with two different baths at fixed temperatures, identifying the processes which minimize heat dissipation. Moreover, we explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.Comment: 11 pages, 5 figures; corrected typos, added references, all results unchange

    Point absorber wave energy converters in regular and irregular waves with time domain analysis

    Get PDF
    A discrete control of latching is used to increase the bandwidth of the efficiency of the Wave Energy Converters (WEC) in regular and irregular seas. When latching control applied to WEC it increases the amplitude of the motion as well as absorbed power. It is assumed that the exciting force is known in the close future and that body is hold in position during the latching time. A heaving vertical-cylinder as a point-absorber WEC is used for the numerical prediction of the different parameters. The absorbed maximum power from the sea is achieved with a three-dimensional panel method using Neumann-Kelvin approximation in which the exact initial-boundary-value problem is linearized about a uniform flow, and recast as an integral equation using the transient free-surface Green function.The calculated response amplitude operator, absorbed power, relative capture width, and efficiency of vertical-cylinder compared with analytical results

    High Tc Superconductors -- A Variational Theory of the Superconducting State

    Full text link
    We use a variational approach to gain insight into the strongly correlated d-wave superconducting state of the high Tc cuprates at T=0. We show that strong correlations lead to qualitatively different trends in pairing and phase coherence: the pairing scale decreases monotonically with hole doping while the SC order parameter shows a non-monotonic dome. We obtain detailed results for the doping-dependence of a large number of experimentally observable quantities, including the chemical potential, coherence length, momentum distribution, nodal quasiparticle weight and dispersion, incoherent features in photoemission spectra, optical spectral weight and superfluid density. Most of our results are in remarkable quantitative agreement with existing data and some of our predictions, first reported in Phys. Rev. Lett. {\bf 87}, 217002 (2001), have been recently verified.Comment: (Minor revisions, 1 figure added, version to appear in PRB) 23 RevTeX pages, 11 eps figs, long version of cond-mat/0101121, contains detailed comparisons with experiments, analytical insights, technical aspects of the calculation, and comparison with slave boson MF

    Singularly Perturbed Control Systems with Noncompact Fast Variable

    Full text link
    We deal with a singularly perturbed optimal control problem with slow and fast variable depending on a parameter {\epsilon}. We study the asymptotic, as {\epsilon} goes to 0, of the corresponding value functions, and show convergence, in the sense of weak semilimits, to sub and supersolution of a suitable limit equation containing the effective Hamiltonian. The novelty of our contribution is that no compactness condition are assumed on the fast variable. This generalization requires, in order to perform the asymptotic proce- dure, an accurate qualitative analysis of some auxiliary equations posed on the space of fast variable. The task is accomplished using some tools of Weak KAM theory, and in particular the notion of Aubry set
    • …
    corecore