1,280 research outputs found

    Coherent States Formulation of Polymer Field Theory

    Full text link
    We introduce a stable and efficient complex Langevin (CL) scheme to enable the first numerical simulations of the coherent-states (CS) formulation of polymer field theory. In contrast with Edwards' well known auxiliary-field (AF) framework, the CS formulation does not contain an embedded non-linear, non-local functional of the auxiliary fields, and the action of the field theory has a fully explicit, finite-order and semi-local polynomial character. In the context of a polymer solution model, we demonstrate that the new CS-CL dynamical scheme for sampling fluctuations in the space of coherent states yields results in good agreement with now-standard AF simulations. The formalism is potentially applicable to a broad range of polymer architectures and may facilitate systematic generation of trial actions for use in coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure

    Stochastic Differential Equations for Quantum Dynamics of Spin-Boson Networks

    Get PDF
    The quantum dynamics of open many-body systems poses a challenge for computational approaches. Here we develop a stochastic scheme based on the positive P phase-space representation to study the nonequilibrium dynamics of coupled spin-boson networks that are driven and dissipative. Such problems are at the forefront of experimental research in cavity and solid state realizations of quantum optics, as well as cold atom physics, trapped ions and superconducting circuits. We demonstrate and test our method on a driven, dissipative two-site system, each site involving a spin coupled to a photonic mode, with photons hopping between the sites, where we find good agreement with Monte Carlo Wavefunction simulations. In addition to numerically reproducing features recently observed in an experiment [Phys. Rev. X 4, 031043 (2014)], we also predict a novel steady state quantum dynamical phase transition for an asymmetric configuration of drive and dissipation.Comment: 15 pages, 8 figure

    A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes

    Full text link
    Basketball games evolve continuously in space and time as players constantly interact with their teammates, the opposing team, and the ball. However, current analyses of basketball outcomes rely on discretized summaries of the game that reduce such interactions to tallies of points, assists, and similar events. In this paper, we propose a framework for using optical player tracking data to estimate, in real time, the expected number of points obtained by the end of a possession. This quantity, called \textit{expected possession value} (EPV), derives from a stochastic process model for the evolution of a basketball possession; we model this process at multiple levels of resolution, differentiating between continuous, infinitesimal movements of players, and discrete events such as shot attempts and turnovers. Transition kernels are estimated using hierarchical spatiotemporal models that share information across players while remaining computationally tractable on very large data sets. In addition to estimating EPV, these models reveal novel insights on players' decision-making tendencies as a function of their spatial strategy.Comment: 31 pages, 9 figure

    Factorization at the LHC: From PDFs to Initial State Jets

    Full text link
    We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q of the hard interaction, factorization does not yield standard parton distribution functions (PDFs) for the initial state. The measurement restricting the hadronic final state introduces a new scale \mu_B << Q and probes the proton prior to the hard collision. This corresponds to evaluating the PDFs at the scale \mu_B. After the proton is probed, the incoming hard parton is contained in an initial-state jet, and the hard collision occurs between partons inside these jets rather than inside protons. The proper description of such initial-state jets requires "beam functions". At the scale \mu_B, the beam function factorizes into a convolution of calculable Wilson coefficients and PDFs. Below \mu_B, the initial-state evolution is described by the usual PDF evolution which changes x, while above \mu_B it is governed by a different renormalization group evolution which sums double logarithms of \mu_B/Q and leaves x fixed. As an example, we prove a factorization theorem for "isolated Drell-Yan", pp -> Xl+l- where X is restricted to have no central jets. We comment on the extension to cases where the hadronic final state contains a certain number of isolated central jets.Comment: 41 pages (19 for everyone + 22 for experts), 16 figures; v2: Notational typos fixed. Added sentences to emphasize that measuring isolated Drell-Yan directly tests the initial state parton shower; v3: typos fixed, journal versio

    Sequence modelling for e-commerce

    Get PDF
    • …
    corecore