3,200 research outputs found

    On the Performance of Multiple Antenna Cooperative Spectrum Sharing Protocol under Nakagami-m Fading

    Full text link
    In a cooperative spectrum sharing (CSS) protocol, two wireless systems operate over the same frequency band albeit with different priorities. The secondary (or cognitive) system which has a lower priority, helps the higher priority primary system to achieve its target rate by acting as a relay and allocating a fraction of its power to forward the primary signal. The secondary system in return is benefited by transmitting its own data on primary system's spectrum. In this paper, we have analyzed the performance of multiple antenna cooperative spectrum sharing protocol under Nakagami-m Fading. Closed form expressions for outage probability have been obtained by varying the parameters m and Omega of the Nakagami-m fading channels. Apart from above, we have shown the impact of power allocation factor (alpha) and parameter m on the region of secondary spectrum access, conventionally defined as critical radius for the secondary system. A comparison between theoretical and simulated results is also presented to corroborate the theoretical results obtained in this paperComment: Accepted in the proceedings of IEEE PIMRC 2015 Hong Kong, Chin

    Source-Channel Coding for the Multiple-Access Relay Channel

    Full text link
    This work considers reliable transmission of general correlated sources over the multiple-access relay channel (MARC) and the multiple-access broadcast relay channel (MABRC). In MARCs only the destination is interested in a reconstruction of the sources, while in MABRCs both the relay and the destination want to reconstruct the sources. We assume that both the relay and the destination have correlated side information. We find sufficient conditions for reliable communication based on operational separation, as well as necessary conditions on the achievable source-channel rate. For correlated sources transmitted over fading Gaussian MARCs and MABRCs we find conditions under which informational separation is optimal.Comment: Presented in ISWCS 2011, Aachen, German

    Optimal space-time codes for the MIMO amplify-and-forward cooperative channel

    Full text link
    In this work, we extend the non-orthogonal amplify-and-forward (NAF) cooperative diversity scheme to the MIMO channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the non-vanishing determinant criterion (NVD) and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single relay case, it is proved that the Golden code and the 4x4 Perfect code are optimal for the single-antenna and two-antenna case, respectively. Simulation results reveal that a significant gain (up to 10dB) can be obtained with the proposed codes, especially in the single-antenna case.Comment: submitted to IEEE Transactions on Information Theory, revised versio
    • …
    corecore