1,622 research outputs found

    Learning Social Navigation from Demonstrations with Conditional Neural Processes

    Full text link
    Sociability is essential for modern robots to increase their acceptability in human environments. Traditional techniques use manually engineered utility functions inspired by observing pedestrian behaviors to achieve social navigation. However, social aspects of navigation are diverse, changing across different types of environments, societies, and population densities, making it unrealistic to use hand-crafted techniques in each domain. This paper presents a data-driven navigation architecture that uses state-of-the-art neural architectures, namely Conditional Neural Processes, to learn global and local controllers of the mobile robot from observations. Additionally, we leverage a state-of-the-art, deep prediction mechanism to detect situations not similar to the trained ones, where reactive controllers step in to ensure safe navigation. Our results demonstrate that the proposed framework can successfully carry out navigation tasks regarding social norms in the data. Further, we showed that our system produces fewer personal-zone violations, causing less discomfort

    Calming Effects of Touch in Human, Animal, and Robotic Interaction—Scientific State-of-the-Art and Technical Advances

    Get PDF
    Small everyday gestures such as a tap on the shoulder can affect the way humans feel and act. Touch can have a calming effect and alter the way stress is handled, thereby promoting mental and physical health. Due to current technical advances and the growing role of intelligent robots in households and healthcare, recent research also addressed the potential of robotic touch for stress reduction. In addition, touch by non-human agents such as animals or inanimate objects may have a calming effect. This conceptual article will review a selection of the most relevant studies reporting the physiological, hormonal, neural, and subjective effects of touch on stress, arousal, and negative affect. Robotic systems capable of non-social touch will be assessed together with control strategies and sensor technologies. Parallels and differences of human-to-human touch and human-to-non-human touch will be discussed. We propose that, under appropriate conditions, touch can act as (social) signal for safety, even when the interaction partner is an animal or a machine. We will also outline potential directions for future research and clinical relevance. Thereby, this review can provide a foundation for further investigations into the beneficial contribution of touch by different agents to regulate negative affect and arousal in humans

    SAFEL - A Situation-aware Fear Learning Model

    Get PDF
    This thesis proposes a novel and robust online adaptation mechanism for threat prediction and prevention capable of taking into consideration complex contextual and temporal information in its internal learning processes. The proposed mechanism is a hybrid cognitive computational model named SAFEL (Situation-Aware FEar Learning), which integrates machine learning algorithms with concepts of situation-awareness from expert systems to simulate both the cued and contextual fear-conditioning phenomena. SAFEL is inspired by well-known neuroscience findings on the brain's mechanisms of fear learning and memory to provide autonomous robots with the ability to predict undesirable or threatening situations to themselves. SAFEL's ultimate goal is to allow autonomous robots to perceive intricate elements and relationships in their environment, learn with experience through autonomous environmental exploration, and adapt at execution time to environmental changes and threats. SAFEL consists of a hybrid architecture composed of three modules, each based on a different approach and inspired by a different region (or function) of the brain involved in fear learning. These modules are: the Amygdala Module (AM), the Hippocampus Module (HM) and the Working Memory Module (WMM). The AM learns and detects environmental threats while the HM makes sense of the robot's context. The WMM is responsible for combining and associating the two types of information processed by the AM and HM. More specifically, the AM simulates the cued conditioning phenomenon by creating associations between co-occurring aversive and neutral environmental stimuli. The AM represents the kernel of emotional appraisal and threat detection in SAFEL's architecture. The HM, in turn, handles environmental information at a higher level of abstraction and complexity than the AM, which depicts the robot's situation as a whole. The information managed by the HM embeds in a unified representation the temporal interactions of multiple stimuli in the environment. Finally, the WMM simulates the contextual conditioning phenomenon by creating associations between the contextual memory formed in the HM and the emotional memory formed in the AM, thus giving emotional meaning to the contextual information acquired in past experiences. Ultimately, any previously experienced pattern of contextual information triggers the retrieval of that stored contextual memory and its emotional meaning from the WMM, warning the robot that an undesirable situation is likely to happen in the near future. The main contribution of this work as compared to the state of the art is a domain-independent mechanism for online learning and adaptation that combines a fear-learning model with the concept of temporal context and is focused on real-world applications for autonomous robotics. SAFEL successfully integrates a symbolic rule-based paradigm for situation management with machine learning algorithms for memorizing and predicting environmental threats to the robot based on complex temporal context. SAFEL has been evaluated in several experiments, which analysed the performance of each module separately. Ultimately, we conducted a comprehensive case study in the robot soccer scenario to evaluate the collective work of all modules as a whole. This case study also analyses to which extent the emotional feedback of SAFEL can improve the intelligent behaviour of a robot in a practical real-world situation, where adaptive skills and fast/flexible decision-making are crucial

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)

    Get PDF
    This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987

    Robot NAO used in therapy: Advanced design and evaluation

    Get PDF
    Treball de Final de Màster Universitari en Sistemes Intel·ligents. Codi: SIE043. Curs acadèmic 2013-2014Following with the previous work which we have done in the Final Research Project, we introduced a therapeutic application with social robotics to improve the positive mood in patients with fibromyalgia. Different works about therapeutic robotics, positive psychology, emotional intelligence, social learning and mood induction procedures (MIPs) are reviewed. Hardware and software requirements and system development are explained with detail. Conclusions about the clinical utility of these robots are disputed. Nowadays, experiments with real fibromyalgia patients are running, the methodology and procedures which take place in them are described in the future lines section of this work

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Autonomous Decision-Making based on Biological Adaptive Processes for Intelligent Social Robots

    Get PDF
    Mención Internacional en el título de doctorThe unceasing development of autonomous robots in many different scenarios drives a new revolution to improve our quality of life. Recent advances in human-robot interaction and machine learning extend robots to social scenarios, where these systems pretend to assist humans in diverse tasks. Thus, social robots are nowadays becoming real in many applications like education, healthcare, entertainment, or assistance. Complex environments demand that social robots present adaptive mechanisms to overcome different situations and successfully execute their tasks. Thus, considering the previous ideas, making autonomous and appropriate decisions is essential to exhibit reasonable behaviour and operate well in dynamic scenarios. Decision-making systems provide artificial agents with the capacity of making decisions about how to behave depending on input information from the environment. In the last decades, human decision-making has served researchers as an inspiration to endow robots with similar deliberation. Especially in social robotics, where people expect to interact with machines with human-like capabilities, biologically inspired decisionmaking systems have demonstrated great potential and interest. Thereby, it is expected that these systems will continue providing a solid biological background and improve the naturalness of the human-robot interaction, usability, and the acceptance of social robots in the following years. This thesis presents a decision-making system for social robots acting in healthcare, entertainment, and assistance with autonomous behaviour. The system’s goal is to provide robots with natural and fluid human-robot interaction during the realisation of their tasks. The decision-making system integrates into an already existing software architecture with different modules that manage human-robot interaction, perception, or expressiveness. Inside this architecture, the decision-making system decides which behaviour the robot has to execute after evaluating information received from different modules in the architecture. These modules provide structured data about planned activities, perceptions, and artificial biological processes that evolve with time that are the basis for natural behaviour. The natural behaviour of the robot comes from the evolution of biological variables that emulate biological processes occurring in humans. We also propose a Motivational model, a module that emulates biological processes in humans for generating an artificial physiological and psychological state that influences the robot’s decision-making. These processes emulate the natural biological rhythms of the human organism to produce biologically inspired decisions that improve the naturalness exhibited by the robot during human-robot interactions. The robot’s decisions also depend on what the robot perceives from the environment, planned events listed in the robot’s agenda, and the unique features of the user interacting with the robot. The robot’s decisions depend on many internal and external factors that influence how the robot behaves. Users are the most critical stimuli the robot perceives since they are the cornerstone of interaction. Social robots have to focus on assisting people in their daily tasks, considering that each person has different features and preferences. Thus, a robot devised for social interaction has to adapt its decisions to people that aim at interacting with it. The first step towards adapting to different users is identifying the user it interacts with. Then, it has to gather as much information as possible and personalise the interaction. The information about each user has to be actively updated if necessary since outdated information may lead the user to refuse the robot. Considering these facts, this work tackles the user adaptation in three different ways. • The robot incorporates user profiling methods to continuously gather information from the user using direct and indirect feedback methods. • The robot has a Preference Learning System that predicts and adjusts the user’s preferences to the robot’s activities during the interaction. • An Action-based Learning System grounded on Reinforcement Learning is introduced as the origin of motivated behaviour. The functionalities mentioned above define the inputs received by the decisionmaking system for adapting its behaviour. Our decision-making system has been designed for being integrated into different robotic platforms due to its flexibility and modularity. Finally, we carried out several experiments to evaluate the architecture’s functionalities during real human-robot interaction scenarios. In these experiments, we assessed: • How to endow social robots with adaptive affective mechanisms to overcome interaction limitations. • Active user profiling using face recognition and human-robot interaction. • A Preference Learning System we designed to predict and adapt the user preferences towards the robot’s entertainment activities for adapting the interaction. • A Behaviour-based Reinforcement Learning System that allows the robot to learn the effects of its actions to behave appropriately in each situation. • The biologically inspired robot behaviour using emulated biological processes and how the robot creates social bonds with each user. • The robot’s expressiveness in affect (emotion and mood) and autonomic functions such as heart rate or blinking frequency.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Richard J. Duro Fernández.- Secretaria: Concepción Alicia Monje Micharet.- Vocal: Silvia Ross

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 136 reports, articles and other documents introduced into the NASA scientific and technical information system in February, 1988

    Frame Problems, Fodor's Challenge, and Practical Reason

    Get PDF
    By bringing the frame problem to bear on psychology, Fodor argues that the interesting activities of mind are not amenable to computational modeling. Following exegesis of the frame problem and Fodor's claims, I argue that underlying Fodor's argument is an unsatisfiable normative principle of rationality that in turn commits him to a particular descriptive claim about the nature of our minds. I argue that the descriptive claim is false and that we should reject the normative principle in favor of one that is at least in principle satisfiable. From this it follows, I argue, that we have no reason for thinking the activities of our minds to be, as a matter of principle, unmodelable. Drawing upon Baars' Global Workspace theory, I next outline an alternative framework that provides a means by which the set of engineering challenges raised by Fodor might be met. Having sketched this alternative, I turn next to consider some of the frame problems arising in practical reason and decision-making. Following discussion of the nature of emotion and its influence on practical reason and decision-making, I argue that consideration of emotion provides one means by which we might contend with some of the frame problem instances that arise in that domain
    corecore