400,752 research outputs found

    Analogues of Non-Gibbsianness in Joint Measures of Disordered Mean Field Models

    Get PDF
    It is known that the joint measures on the product of spin-space and disorder space are very often non-Gibbsian measures, for lattice systems with quenched disorder, at low temperature. Are there reflections of this non-Gibbsianness in the corresponding mean-field models? We study the continuity properties of the conditional probabilities in finite volume of the following mean field models: (a) joint measures of random field Ising, (b) joint measures of dilute Ising, (c) decimation of ferromagnetic Ising. The conditional probabilities are functions of the empirical mean of the conditionings; so we look at the large volume behavior of these functions to discover non-trivial limiting objects. For (a) we find (1) discontinuous dependence for almost any realization and (2) dependence of the conditional probabilities on the phase. In contrast to that we see continuous behavior for (b) and (c), for almost any realization. This is in complete analogy to the behavior of the corresponding lattice models in high dimensions. It shows that non-Gibbsian behavior which seems a genuine lattice phenomenon can be partially understood already on the level of mean-field models.

    A Probabilistic Approach to Mean Field Games with Major and Minor Players

    Full text link
    We propose a new approach to mean field games with major and minor players. Our formulation involves a two player game where the optimization of the representative minor player is standard while the major player faces an optimization over conditional McKean-Vlasov stochastic differential equations. The definition of this limiting game is justified by proving that its solution provides approximate Nash equilibriums for large finite player games. This proof depends upon the generalization of standard results on the propagation of chaos to conditional dynamics. Because it is on independent interest, we prove this generalization in full detail. Using a conditional form of the Pontryagin stochastic maximum principle (proven in the appendix), we reduce the solution of the mean field game to a forward-backward system of stochastic differential equations of the conditional McKean-Vlasov type, which we solve in the Linear Quadratic setting. We use this class of models to show that Nash equilibriums in our formulation can be different from those of the formulations contemplated so far in the literature

    Multi-Modal Mean-Fields via Cardinality-Based Clamping

    Get PDF
    Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probability distribution as a product of marginal probabilities, it may fail to properly account for important dependencies between variables. We therefore replace the fully factorized distribution of Mean Field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. By introducing two new ideas, namely, conditioning on groups of variables instead of single ones and using a parameter of the conditional random field potentials, that we identify to the temperature in the sense of statistical physics to select such groups, we can perform this minimization efficiently. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of Mean Field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean fields.Comment: Submitted for review to CVPR 201

    Phonon number quantum jumps in an optomechanical system

    Full text link
    We describe an optomechanical system in which the mean phonon number of a single mechanical mode conditionally displaces the amplitude of the optical field. Using homodyne detection of the output field we establish the conditions under which phonon number quantum jumps can be inferred from the measurement record: both the cavity damping rate and the measurement rate of the phonon number must be much greater than the thermalization rate of the mechanical mode. We present simulations of the conditional dynamics of the measured system using the stochastic master equation. In the good-measurement limit, the conditional evolution of the mean phonon number shows quantum jumps as phonons enter and exit the mechanical resonator via the bath.Comment: 13 pages, 4 figures. minor revisions since first versio

    Refined Asymptotics of the Finite-Size Magnetization via a New Conditional Limit Theorem for the Spin

    Full text link
    We study the fluctuations of the spin per site around the thermodynamic magnetization in the mean-field Blume-Capel model. Our main theorem generalizes the main result in a previous paper (Ellis, Machta, and Otto) in which the first rigorous confirmation of the statistical mechanical theory of finite-size scaling for a mean-field model is given. In that paper our goal is to determine whether the thermodynamic magnetization is a physically relevant estimator of the finite-size magnetization. This is done by comparing the asymptotic behaviors of these two quantities along parameter sequences converging to either a second-order point or the tricritical point in the mean-field Blume-Capel model. The main result is that the thermodynamic magnetization and the finite-size magnetization are asymptotic when the parameter α\alpha governing the speed at which the sequence approaches criticality is below a certain threshold α0\alpha_0. Our main theorem in the present paper on the fluctuations of the spin per site around the thermodynamic magnetization is based on a new conditional limit theorem for the spin, which is closely related to a new conditional central limit theorem for the spin.Comment: 78 pages, 2 figure

    On Endogenous Fissility of Argillites within Carbonous Deposits Of Donbass

    Get PDF
    Based on direct numerical simulations of forced turbulence, shear turbulence, decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor-based Reynolds numbers Reλ between 69 and 295, the normalized probability density function of the length distribution P(l) of dissipation elements, the conditional mean scalar difference Δkl at the extreme points as well as the scaling of the two-point velocity difference along gradient trajectories Δun are studied. Using the field of the instantaneous turbulent kinetic energy k as a scalar, we find good agreement between the model equation for P(l) as proposed by Wang and Peters (2008 J. Fluid Mech. 608 113–38) and the results obtained in the different direct numerical simulation cases. This confirms the independence of the model solution from both the Reynolds number and the type of turbulent flow, so that it can be considered universally valid. In addition, we show a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we examine the scaling of the conditional two-point velocity difference along gradient trajectories. In particular, we compare the linear s/τ scaling, where τ denotes an integral time scale and s the separation arclength along a gradient trajectory in the inertial range as derived by Wang (2009 Phys. Rev. E 79 046325) with the sa∞ scaling, where a∞ denotes the asymptotic value of the conditional mean strain rate of large dissipation elements
    corecore