4,298 research outputs found

    Generalized conditional gradient: analysis of convergence and applications

    Get PDF
    The objectives of this technical report is to provide additional results on the generalized conditional gradient methods introduced by Bredies et al. [BLM05]. Indeed , when the objective function is smooth, we provide a novel certificate of optimality and we show that the algorithm has a linear convergence rate. Applications of this algorithm are also discussed

    Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization

    Get PDF
    We propose a new first-order optimisation algorithm to solve high-dimensional non-smooth composite minimisation problems. Typical examples of such problems have an objective that decomposes into a non-smooth empirical risk part and a non-smooth regularisation penalty. The proposed algorithm, called Semi-Proximal Mirror-Prox, leverages the Fenchel-type representation of one part of the objective while handling the other part of the objective via linear minimization over the domain. The algorithm stands in contrast with more classical proximal gradient algorithms with smoothing, which require the computation of proximal operators at each iteration and can therefore be impractical for high-dimensional problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds, i.e. O(1/ϵ2)O(1/\epsilon^2), for the number of calls to linear minimization oracle. We present promising experimental results showing the interest of the approach in comparison to competing methods

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Variance-Reduced and Projection-Free Stochastic Optimization

    Full text link
    The Frank-Wolfe optimization algorithm has recently regained popularity for machine learning applications due to its projection-free property and its ability to handle structured constraints. However, in the stochastic learning setting, it is still relatively understudied compared to the gradient descent counterpart. In this work, leveraging a recent variance reduction technique, we propose two stochastic Frank-Wolfe variants which substantially improve previous results in terms of the number of stochastic gradient evaluations needed to achieve 1ϵ1-\epsilon accuracy. For example, we improve from O(1ϵ)O(\frac{1}{\epsilon}) to O(ln1ϵ)O(\ln\frac{1}{\epsilon}) if the objective function is smooth and strongly convex, and from O(1ϵ2)O(\frac{1}{\epsilon^2}) to O(1ϵ1.5)O(\frac{1}{\epsilon^{1.5}}) if the objective function is smooth and Lipschitz. The theoretical improvement is also observed in experiments on real-world datasets for a multiclass classification application
    corecore