3,410 research outputs found

    Quantum models of classical mechanics: maximum entropy packets

    Get PDF
    In a previous paper, a project of constructing quantum models of classical properties has been started. The present paper concludes the project by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the state operators of ME packets is obtained with its help. The diagonal representation of the operators is found. A general way of calculating averages that can replace the partition function method is described. Classical mechanics is reinterpreted as a statistical theory. Classical trajectories are replaced by classical ME packets. Quantum states approximate classical ones if the product of the coordinate and momentum variances is much larger than Planck constant. Thus, ME packets with large variances follow their classical counterparts better than Gaussian wave packets.Comment: 26 pages, no figure. Introduction and the section on classical limit are extended, new references added. Definitive version accepted by Found. Phy

    On the prevalence of non-Gibbsian states in mathematical physics

    Get PDF
    Gibbs measures are the main object of study in equilibrium statistical mechanics, and are used in many other contexts, including dynamical systems and ergodic theory, and spatial statistics. However, in a large number of natural instances one encounters measures that are not of Gibbsian form. We present here a number of examples of such non-Gibbsian measures, and discuss some of the underlying mathematical and physical issues to which they gave rise

    Sufficient families and entropy of inverse limit

    Get PDF

    Sharp thresholds for Gibbs-non-Gibbs transition in the fuzzy Potts model with a Kac-type interaction

    Get PDF
    We investigate the Gibbs properties of the fuzzy Potts model on the d-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernandez, den Hollander and Mart{\i}nez for their study of the Gibbs-non-Gibbs transitions of a dynamical Kac-Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the fuzzy Kac-Potts model with class size unequal two. On the way to this result we prove a large deviation principle for color profiles with diluted total mass densities and use monotocity arguments.Comment: 20 page
    corecore