2 research outputs found

    Relationship between Conditional Diagnosability and 2-extra Connectivity of Symmetric Graphs

    Full text link
    The conditional diagnosability and the 2-extra connectivity are two important parameters to measure ability of diagnosing faulty processors and fault-tolerance in a multiprocessor system. The conditional diagnosability tc(G)t_c(G) of GG is the maximum number tt for which GG is conditionally tt-diagnosable under the comparison model, while the 2-extra connectivity κ2(G)\kappa_2(G) of a graph GG is the minimum number kk for which there is a vertex-cut FF with ∣F∣=k|F|=k such that every component of G−FG-F has at least 33 vertices. A quite natural problem is what is the relationship between the maximum and the minimum problem? This paper partially answer this problem by proving tc(G)=κ2(G)t_c(G)=\kappa_2(G) for a regular graph GG with some acceptable conditions. As applications, the conditional diagnosability and the 2-extra connectivity are determined for some well-known classes of vertex-transitive graphs, including, star graphs, (n,k)(n,k)-star graphs, alternating group networks, (n,k)(n,k)-arrangement graphs, alternating group graphs, Cayley graphs obtained from transposition generating trees, bubble-sort graphs, kk-ary nn-cube networks and dual-cubes. Furthermore, many known results about these networks are obtained directly

    Lower bounds for dilation, wirelength, and edge congestion of embedding graphs into hypercubes

    Full text link
    Interconnection networks provide an effective mechanism for exchanging data between processors in a parallel computing system. One of the most efficient interconnection networks is the hypercube due to its structural regularity, potential for parallel computation of various algorithms, and the high degree of fault tolerance. Thus it becomes the first choice of topological structure of parallel processing and computing systems. In this paper, lower bounds for the dilation, wirelength, and edge congestion of an embedding of a graph into a hypercube are proved. Two of these bounds are expressed in terms of the bisection width. Applying these results, the dilation and wirelength of embedding of certain complete multipartite graphs, folded hypercubes, wheels, and specific Cartesian products are computed
    corecore