13 research outputs found

    Manufacturing Process Causal Knowledge Discovery using a Modified Random Forest-based Predictive Model

    Get PDF
    A Modified Random Forest algorithm (MRF)-based predictive model is proposed for use in man-ufacturing processes to estimate the e藱ects of several potential interventions, such as (i) altering the operating ranges of selected continuous process parameters within specified tolerance limits,(ii) choosing particular categories of discrete process parameters, or (iii) choosing combinations of both types of process parameters. The model introduces a non-linear approach to defining the most critical process inputs by scoring the contribution made by each process input to the process output prediction power. It uses this contribution to discover optimal operating ranges for the continuous process parameters and/or optimal categories for discrete process parameters. The set of values used for the process inputs was generated from operating ranges identified using a novel Decision Path Search (DPS) algorithm and Bootstrap sampling.The odds ratio is the ratio between the occurrence probabilities of desired and undesired process output values. The e藱ect of potential interventions, or of proposed confirmation trials, are quantified as posterior odds and used to calculate conditional probability distributions. The advantages of this approach are discussed in comparison to fitting these probability distributions to Bayesian Networks (BN).The proposed explainable data-driven predictive model is scalable to a large number of process factors with non-linear dependence on one or more process responses. It allows the discovery of data-driven process improvement opportunities that involve minimal interaction with domain expertise. An iterative Random Forest algorithm is proposed to predict the missing values for the mixed dataset (continuous and categorical process parameters). It is shown that the algorithm is robust even at high proportions of missing values in the dataset.The number of observations available in manufacturing process datasets is generally low, e.g. of a similar order of magnitude to the number of process parameters. Hence, Neural Network (NN)-based deep learning methods are generally not applicable, as these techniques require 50-100 times more observations than input factors (process parameters).The results are verified on a number of benchmark examples with datasets published in the lit-erature. The results demonstrate that the proposed method outperforms the comparison approaches in term of accuracy and causality, with linearity assumed. Furthermore, the computational cost is both far better and very feasible for heterogeneous datasets

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation
    corecore