1,051 research outputs found

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    Abductive Design of BDI Agent-based Digital Twins of Organizations

    Get PDF
    For a Digital Twin - a precise, virtual representation of a physical counterpart - of a human-like system to be faithful and complete, it must appeal to a notion of anthropomorphism (i.e., attributing human behaviour to non-human entities) to imitate (1) the externally visible behaviour and (2) the internal workings of that system. Although the Belief-Desire-Intention (BDI) paradigm was not developed for this purpose, it has been used successfully in human modeling applications. In this sense, we introduce in this thesis the notion of abductive design of BDI agent-based Digital Twins of organizations, which builds on two powerful reasoning disciplines: reverse engineering (to recreate the visible behaviour of the target system) and goal-driven eXplainable Artificial Intelligence (XAI) (for viewing the behaviour of the target system through the lens of BDI agents). Precisely speaking, the overall problem we are trying to address in this thesis is to “Find a BDI agent program that best explains (in the sense of formal abduction) the behaviour of a target system based on its past experiences . To do so, we propose three goal-driven XAI techniques: (1) abductive design of BDI agents, (2) leveraging imperfect explanations and (3) mining belief-based explanations. The resulting approach suggests that using goal-driven XAI to generate Digital Twins of organizations in the form of BDI agents can be effective, even in a setting with limited information about the target system’s behaviour

    Explaining Deep Q-Learning Experience Replay with SHapley Additive exPlanations

    Get PDF
    Reinforcement Learning (RL) has shown promise in optimizing complex control and decision-making processes but Deep Reinforcement Learning (DRL) lacks interpretability, limiting its adoption in regulated sectors like manufacturing, finance, and healthcare. Difficulties arise from DRL’s opaque decision-making, hindering efficiency and resource use, this issue is amplified with every advancement. While many seek to move from Experience Replay to A3C, the latter demands more resources. Despite efforts to improve Experience Replay selection strategies, there is a tendency to keep capacity high. This dissertation investigates training a Deep Convolutional Q-learning agent across 20 Atari games, in solving a control task, physics task, and simulating addition, while intentionally reducing Experience Replay capacity from 1×106 to 5×102 . It was found that over 40% in the reduction of Experience Replay size is allowed for 18 of 23 simulations tested, offering a practical path to resource-efficient DRL. To illuminate agent decisions and align them with game mechanics, a novel method is employed: visualizing Experience Replay via Deep SHAP Explainer. This approach fosters comprehension and transparent, interpretable explanations, though any capacity reduction must be cautious to avoid overfitting. This study demonstrates the feasibility of reducing Experience Replay and advocates for transparent, interpretable decision explanations using the Deep SHAP Explainer to promote enhancing resource efficiency in Experience Replay

    Active Learning for Reducing Labeling Effort in Text Classification Tasks

    Get PDF
    Labeling data can be an expensive task as it is usually performed manually by domain experts. This is cumbersome for deep learning, as it is dependent on large labeled datasets. Active learning (AL) is a paradigm that aims to reduce labeling effort by only using the data which the used model deems most informative. Little research has been done on AL in a text classification setting and next to none has involved the more recent, state-of-the-art Natural Language Processing (NLP) models. Here, we present an empirical study that compares different uncertainty-based algorithms with BERTbase_{base} as the used classifier. We evaluate the algorithms on two NLP classification datasets: Stanford Sentiment Treebank and KvK-Frontpages. Additionally, we explore heuristics that aim to solve presupposed problems of uncertainty-based AL; namely, that it is unscalable and that it is prone to selecting outliers. Furthermore, we explore the influence of the query-pool size on the performance of AL. Whereas it was found that the proposed heuristics for AL did not improve performance of AL; our results show that using uncertainty-based AL with BERTbase_{base} outperforms random sampling of data. This difference in performance can decrease as the query-pool size gets larger.Comment: Accepted as a conference paper at the joint 33rd Benelux Conference on Artificial Intelligence and the 30th Belgian Dutch Conference on Machine Learning (BNAIC/BENELEARN 2021). This camera-ready version submitted to BNAIC/BENELEARN, adds several improvements including a more thorough discussion of related work plus an extended discussion section. 28 pages including references and appendice

    Context-Aware Composition of Agent Policies by Markov Decision Process Entity Embeddings and Agent Ensembles

    Full text link
    Computational agents support humans in many areas of life and are therefore found in heterogeneous contexts. This means they operate in rapidly changing environments and can be confronted with huge state and action spaces. In order to perform services and carry out activities in a goal-oriented manner, agents require prior knowledge and therefore have to develop and pursue context-dependent policies. However, prescribing policies in advance is limited and inflexible, especially in dynamically changing environments. Moreover, the context of an agent determines its choice of actions. Since the environments can be stochastic and complex in terms of the number of states and feasible actions, activities are usually modelled in a simplified way by Markov decision processes so that, e.g., agents with reinforcement learning are able to learn policies, that help to capture the context and act accordingly to optimally perform activities. However, training policies for all possible contexts using reinforcement learning is time-consuming. A requirement and challenge for agents is to learn strategies quickly and respond immediately in cross-context environments and applications, e.g., the Internet, service robotics, cyber-physical systems. In this work, we propose a novel simulation-based approach that enables a) the representation of heterogeneous contexts through knowledge graphs and entity embeddings and b) the context-aware composition of policies on demand by ensembles of agents running in parallel. The evaluation we conducted with the "Virtual Home" dataset indicates that agents with a need to switch seamlessly between different contexts, can request on-demand composed policies that lead to the successful completion of context-appropriate activities without having to learn these policies in lengthy training steps and episodes, in contrast to agents that use reinforcement learning.Comment: 30 pages, 11 figures, 9 tables, 3 listings, Re-submitted to Semantic Web Journal, Currently, under revie

    Using Multi-Relational Embeddings as Knowledge Graph Representations for Robotics Applications

    Get PDF
    User demonstrations of robot tasks in everyday environments, such as households, can be brittle due in part to the dynamic, diverse, and complex properties of those environments. Humans can find solutions in ambiguous or unfamiliar situations by using a wealth of common-sense knowledge about their domains to make informed generalizations. For example, likely locations for food in a novel household. Prior work has shown that robots can benefit from reasoning about this type of semantic knowledge, which can be modeled as a knowledge graph of interrelated facts that define whether a relationship exists between two entities. Semantic reasoning about domain knowledge using knowledge graph representations has improved the robustness and usability of end user robots by enabling more fault tolerant task execution. Knowledge graph representations define the underlying representation of facts, how facts are organized, and implement semantic reasoning by defining the possible computations over facts (e.g. association, fact-prediction). This thesis examines the use of multi-relational embeddings as knowledge graph representations within the context of robust task execution and develops methods to explain the inferences of and sequentially train multi-relational embeddings. This thesis contributes: (i) a survey of knowledge graph representations that model semantic domain knowledge in robotics, (ii) the development and evaluation of our knowledge graph representation based on multi-relational embeddings, (iii) the integration of our knowledge graph representation into a robot architecture to improve robust task execution, (iv) the development and evaluation of methods to sequentially update multi-relational embeddings, and (v) the development and evaluation of an inference reconciliation framework for multi-relational embeddings.Ph.D
    • …
    corecore