1,208 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Preference Networks: Probabilistic Models for Recommendation Systems

    Full text link
    Recommender systems are important to help users select relevant and personalised information over massive amounts of data available. We propose an unified framework called Preference Network (PN) that jointly models various types of domain knowledge for the task of recommendation. The PN is a probabilistic model that systematically combines both content-based filtering and collaborative filtering into a single conditional Markov random field. Once estimated, it serves as a probabilistic database that supports various useful queries such as rating prediction and top-NN recommendation. To handle the challenging problem of learning large networks of users and items, we employ a simple but effective pseudo-likelihood with regularisation. Experiments on the movie rating data demonstrate the merits of the PN.Comment: In Proc. of 6th Australasian Data Mining Conference (AusDM), Gold Coast, Australia, pages 195--202, 200

    Accurate and justifiable : new algorithms for explainable recommendations.

    Get PDF
    Websites and online services thrive with large amounts of online information, products, and choices, that are available but exceedingly difficult to find and discover. This has prompted two major paradigms to help sift through information: information retrieval and recommender systems. The broad family of information retrieval techniques has given rise to the modern search engines which return relevant results, following a user\u27s explicit query. The broad family of recommender systems, on the other hand, works in a more subtle manner, and do not require an explicit query to provide relevant results. Collaborative Filtering (CF) recommender systems are based on algorithms that provide suggestions to users, based on what they like and what other similar users like. Their strength lies in their ability to make serendipitous, social recommendations about what books to read, songs to listen to, movies to watch, courses to take, or generally any type of item to consume. Their strength is also that they can recommend items of any type or content because their focus is on modeling the preferences of the users rather than the content of the recommended items. Although recommender systems have made great strides over the last two decades, with significant algorithmic advances that have made them increasingly accurate in their predictions, they suffer from a few notorious weaknesses. These include the cold-start problem when new items or new users enter the system, and lack of interpretability and explainability in the case of powerful black-box predictors, such as the Singular Value Decomposition (SVD) family of recommenders, including, in particular, the popular Matrix Factorization (MF) techniques. Also, the absence of any explanations to justify their predictions can reduce the transparency of recommender systems and thus adversely impact the user\u27s trust in them. In this work, we propose machine learning approaches for multi-domain Matrix Factorization (MF) recommender systems that can overcome the new user cold-start problem. We also propose new algorithms to generate explainable recommendations, using two state of the art models: Matrix Factorization (MF) and Restricted Boltzmann Machines (RBM). Our experiments, which were based on rigorous cross-validation on the MovieLens benchmark data set and on real user tests, confirmed that our proposed methods succeed in generating explainable recommendations without a major sacrifice in accuracy

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Analyzing Deep Learning Algorithms for Recommender Systems

    Get PDF
    As the volume of online information increases, recommender systems have been an effective strategy to overcome information overload by giving selective recommendations based on certain criteria such as user ratings and user interactions. Recommender systems are utilized in a variety of fields, with common examples being music recommendations and product recommendations on E-Commerce websites. These systems are usually constructed using either collaborative filtering, content-based filtering, or both. The most traditional way of developing a collaborative filtering recommender system is using matrix factorization, which works by decomposing a user-item interaction matrix into the product of two lower dimensionality rectangular matrix. However, as new technologies appear, matrix factorization is often replaced by other algorithms that could perform better than in a recommendation system. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing. These successes are made possible by deep learning algorithms’ outstanding ability to learn feature representations non-linearly. The influence of deep learning is also prevalent in recommender systems, as demonstrated by its effectiveness when applied to information retrieval and recommender research. This research project performs an analysis and implementation on variants of two deep learning algorithms, autoencoder and restricted Boltzmann machines, and how they perform in recommender systems compared to matrix factorization

    Leveraging Deep Learning Techniques on Collaborative Filtering Recommender Systems

    Full text link
    With the exponentially increasing volume of online data, searching and finding required information have become an extensive and time-consuming task. Recommender Systems as a subclass of information retrieval and decision support systems by providing personalized suggestions helping users access what they need more efficiently. Among the different techniques for building a recommender system, Collaborative Filtering (CF) is the most popular and widespread approach. However, cold start and data sparsity are the fundamental challenges ahead of implementing an effective CF-based recommender. Recent successful developments in enhancing and implementing deep learning architectures motivated many studies to propose deep learning-based solutions for solving the recommenders' weak points. In this research, unlike the past similar works about using deep learning architectures in recommender systems that covered different techniques generally, we specifically provide a comprehensive review of deep learning-based collaborative filtering recommender systems. This in-depth filtering gives a clear overview of the level of popularity, gaps, and ignored areas on leveraging deep learning techniques to build CF-based systems as the most influential recommenders.Comment: 24 pages, 14 figure

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems
    • …
    corecore