18,114 research outputs found

    Conditional Random Fields for Multi-Camera Object Detection

    Get PDF
    We formulate a model for multi-class object detection in a multi-camera environment. From our knowledge, this is the first time that this problem is addressed taken into account different object classes simultaneously. Given several images of the scene taken from different angles, our system estimates the ground plane location of the objects from the output of several object detectors applied at each viewpoint. We cast the problem as an energy minimization modeled with a Conditional Random Field (CRF). Instead of predicting the presence of an object at each image location independently, we simultaneously predict the labeling of the entire scene. Our CRF is able to take into account occlusions between objects and contextual constraints among them. We propose an effective iterative strategy that renders tractable the underlying optimization problem, and learn the parameters of the model with the max-margin paradigm. We evaluate the performance of our model on several challenging multi-camera pedestrian detection datasets namely PETS 2009 and EPFL terrace sequence. We also introduce a new dataset in which multiple classes of objects appear simultaneously in the scene. It is here where we show that our method effectively handles occlusions in the multi-class case

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes
    • …
    corecore