133 research outputs found

    The Marginal Bayesian CramĂ©r–Rao Bound for Jump Markov Systems

    Full text link

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Recursive joint CramĂ©r‐Rao lower bound for parametric systems with two‐adjacent‐states dependent measurements

    Get PDF
    Joint Cramér-Rao lower bound (JCRLB) is very useful for the performance evaluation of joint state and parameter estimation (JSPE) of non-linear systems, in which the current measurement only depends on the current state. However, in reality, the non-linear systems with two-adjacent-states dependent (TASD) measurements, that is, the current measurement is dependent on the current state as well as the most recent previous state, are also common. First, the recursive JCRLB for the general form of such non-linear systems with unknown deterministic parameters is developed. Its relationships with the posterior CRLB for systems with TASD measurements and the hybrid CRLB for regular parametric systems are also provided. Then, the recursive JCRLBs for two special forms of parametric systems with TASD measurements, in which the measurement noises are autocorrelated or cross-correlated with the process noises at one time step apart, are presented, respectively. Illustrative examples in radar target tracking show the effectiveness of the JCRLB for the performance evaluation of parametric TASD systems

    Tracking in Wireless Sensor Networks Using Particle Filtering: Physical Layer Considerations

    Get PDF
    Abstract-In this paper, a new framework for target tracking in a wireless sensor network using particle filters is proposed. Under this framework, the imperfect nature of the wireless communication channels between sensors and the fusion center along with some physical layer design parameters of the network are incorporated in the tracking algorithm based on particle filters. We call this approach "channel-aware particle filtering." Channel-aware particle filtering schemes are derived for different wireless channel models and receiver architectures. Furthermore, we derive the posterior Cramér-Rao lower bounds (PCRLBs) for our proposed channel-aware particle filters. Simulation results are presented to demonstrate that the tracking performance of the channel-aware particle filters can reach their theoretical performance bounds even with relatively small number of sensors and they have superior performance compared to channel-unaware particle filters. Index Terms-Channel-aware signal processing, particle filters, posterior Cramér-Rao lower bound, wireless communication channels, wireless sensor networks (WSNs)

    Bayesian algorithms for mobile terminal positioning in outdoor wireless environments

    Get PDF
    [no abstract

    On particle filters in radar target tracking

    Get PDF
    The dissertation focused on the research, implementation, and evaluation of particle filters for radar target track filtering of a maneuvering target, through quantitative simulations and analysis thereof. Target track filtering, also called target track smoothing, aims to minimize the error between a radar target's predicted and actual position. From the literature it had been suggested that particle filters were more suitable for filtering in non-linear/non-Gaussian systems. Furthermore, it had been determined that particle filters were a relatively newer field of research relating to radar target track filtering for non-linear, non-Gaussian maneuvering target tracking problems, compared to the more traditional and widely known and implemented approaches and techniques. The objectives of the research project had been achieved through the development of a software radar target tracking filter simulator, which implemented a sequential importance re-sampling particle filter algorithm and suitable target and noise models. This particular particle filter had been identified from a review of the theory of particle filters. The theory of the more conventional tracking filters used in radar applications had also been reviewed and discussed. The performance of the sequential importance re-sampling particle filter for radar target track filtering had been evaluated through quantitative simulations and analysis thereof, using predefined metrics identified from the literature. These metrics had been the root mean squared error metric for accuracy, and the normalized processing time metric for computational complexity. It had been shown that the sequential importance re-sampling particle filter achieved improved accuracy performance in the track filtering of a maneuvering radar target in a non-Gaussian (Laplacian) noise environment, compared to a Gaussian noise environment. It had also been shown that the accuracy performance of the sequential importance re-sampling particle filter is a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The sequential importance re-sampling particle filter had also been compared to two conventional tracking filters, namely the alpha-beta filter and the Singer-Kalman filter, and had better accuracy performance in both cases. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be higher than that of both the alpha-beta filter and the Singer-Kalman filter. Analysis of the posterior Cramér-Rao lower bound of the sequential importance re-sampling particle filter had also been conducted and presented in the dissertation

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Exploiting Sparse Structures in Source Localization and Tracking

    Get PDF
    This thesis deals with the modeling of structured signals under different sparsity constraints. Many phenomena exhibit an inherent structure that may be exploited when setting up models, examples include audio waves, radar, sonar, and image objects. These structures allow us to model, identify, and classify the processes, enabling parameter estimation for, e.g., identification, localisation, and tracking.In this work, such structures are exploited, with the goal to achieve efficient localisation and tracking of a structured source signal. Specifically, two scenarios are considered. In papers A and B, the aim is to find a sparse subset of a structured signal such that the signal parameters and source locations maybe estimated in an optimal way. For the sparse subset selection, a combinatorial optimization problem is approximately solved by means of convex relaxation, with the results of allowing for different types of a priori information to be incorporated in the optimization. In paper C, a sparse subset of data is provided, and a generative model is used to find the location of an unknown number of jammers in a wireless network, with the jammers’ movement in the network being tracked as additional observations become available
    • 

    corecore